BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31571211)

  • 1. ATPase reaction cycle of P4-ATPases affects their transport from the endoplasmic reticulum.
    Tone T; Nakayama K; Takatsu H; Shin HW
    FEBS Lett; 2020 Feb; 594(3):412-423. PubMed ID: 31571211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP9B, a P4-ATPase (a putative aminophospholipid translocase), localizes to the trans-Golgi network in a CDC50 protein-independent manner.
    Takatsu H; Baba K; Shima T; Umino H; Kato U; Umeda M; Nakayama K; Shin HW
    J Biol Chem; 2011 Nov; 286(44):38159-38167. PubMed ID: 21914794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CDC50 proteins are critical components of the human class-1 P4-ATPase transport machinery.
    Bryde S; Hennrich H; Verhulst PM; Devaux PF; Lenoir G; Holthuis JC
    J Biol Chem; 2010 Dec; 285(52):40562-72. PubMed ID: 20961850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphatidylserine flipping by the P4-ATPase ATP8A2 is electrogenic.
    Tadini-Buoninsegni F; Mikkelsen SA; Mogensen LS; Molday RS; Andersen JP
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16332-16337. PubMed ID: 31371510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast and human P4-ATPases transport glycosphingolipids using conserved structural motifs.
    Roland BP; Naito T; Best JT; Arnaiz-Yépez C; Takatsu H; Yu RJ; Shin HW; Graham TR
    J Biol Chem; 2019 Feb; 294(6):1794-1806. PubMed ID: 30530492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heteromeric interactions required for abundance and subcellular localization of human CDC50 proteins and class 1 P4-ATPases.
    van der Velden LM; Wichers CG; van Breevoort AE; Coleman JA; Molday RS; Berger R; Klomp LW; van de Graaf SF
    J Biol Chem; 2010 Dec; 285(51):40088-96. PubMed ID: 20947505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospholipid-flipping activity of P4-ATPase drives membrane curvature.
    Takada N; Naito T; Inoue T; Nakayama K; Takatsu H; Shin HW
    EMBO J; 2018 May; 37(9):. PubMed ID: 29599178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrates of P4-ATPases: beyond aminophospholipids (phosphatidylserine and phosphatidylethanolamine).
    Shin HW; Takatsu H
    FASEB J; 2019 Mar; 33(3):3087-3096. PubMed ID: 30509129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of residues defining phospholipid flippase substrate specificity of type IV P-type ATPases.
    Baldridge RD; Graham TR
    Proc Natl Acad Sci U S A; 2012 Feb; 109(6):E290-8. PubMed ID: 22308393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid Flippase ATP10A Translocates Phosphatidylcholine and Is Involved in Plasma Membrane Dynamics.
    Naito T; Takatsu H; Miyano R; Takada N; Nakayama K; Shin HW
    J Biol Chem; 2015 Jun; 290(24):15004-17. PubMed ID: 25947375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding P4-ATPase substrate interactions.
    Roland BP; Graham TR
    Crit Rev Biochem Mol Biol; 2016; 51(6):513-527. PubMed ID: 27696908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The N- or C-terminal cytoplasmic regions of P4-ATPases determine their cellular localization.
    Okamoto S; Naito T; Shigetomi R; Kosugi Y; Nakayama K; Takatsu H; Shin HW
    Mol Biol Cell; 2020 Sep; 31(19):2115-2124. PubMed ID: 32614659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking phospholipid flippases to vesicle-mediated protein transport.
    Muthusamy BP; Natarajan P; Zhou X; Graham TR
    Biochim Biophys Acta; 2009 Jul; 1791(7):612-9. PubMed ID: 19286470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane.
    Takatsu H; Tanaka G; Segawa K; Suzuki J; Nagata S; Nakayama K; Shin HW
    J Biol Chem; 2014 Nov; 289(48):33543-56. PubMed ID: 25315773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism and significance of P4 ATPase-catalyzed lipid transport: lessons from a Na+/K+-pump.
    Puts CF; Holthuis JC
    Biochim Biophys Acta; 2009 Jul; 1791(7):603-11. PubMed ID: 19233312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of post-translational modifications at the β-subunit ectodomain in complex association with a promiscuous plant P4-ATPase.
    Costa SR; Marek M; Axelsen KB; Theorin L; Pomorski TG; López-Marqués RL
    Biochem J; 2016 Jun; 473(11):1605-15. PubMed ID: 27048590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical role of the beta-subunit CDC50A in the stable expression, assembly, subcellular localization, and lipid transport activity of the P4-ATPase ATP8A2.
    Coleman JA; Molday RS
    J Biol Chem; 2011 May; 286(19):17205-16. PubMed ID: 21454556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryo-EM structures capture the transport cycle of the P4-ATPase flippase.
    Hiraizumi M; Yamashita K; Nishizawa T; Nureki O
    Science; 2019 Sep; 365(6458):1149-1155. PubMed ID: 31416931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The phospholipid flippase ATP9A is required for the recycling pathway from the endosomes to the plasma membrane.
    Tanaka Y; Ono N; Shima T; Tanaka G; Katoh Y; Nakayama K; Takatsu H; Shin HW
    Mol Biol Cell; 2016 Dec; 27(24):3883-3893. PubMed ID: 27733620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional role of highly conserved residues of the N-terminal tail and first transmembrane segment of a P4-ATPase.
    Perandrés-López R; Sánchez-Cañete MP; Gamarro F; Castanys S
    Biochem J; 2018 Mar; 475(5):887-899. PubMed ID: 29438067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.