These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 31571320)

  • 21. Disease prediction based on functional connectomes using a scalable and spatially-informed support vector machine.
    Watanabe T; Kessler D; Scott C; Angstadt M; Sripada C
    Neuroimage; 2014 Aug; 96():183-202. PubMed ID: 24704268
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine learning identifies unaffected first-degree relatives with functional network patterns and cognitive impairment similar to those of schizophrenia patients.
    Jing R; Li P; Ding Z; Lin X; Zhao R; Shi L; Yan H; Liao J; Zhuo C; Lu L; Fan Y
    Hum Brain Mapp; 2019 Sep; 40(13):3930-3939. PubMed ID: 31148311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. External Validation of a Machine Learning Model for Schizophrenia Classification.
    He Y; Sakuma K; Kishi T; Li Y; Matsunaga M; Tanihara S; Iwata N; Ota A
    J Clin Med; 2024 May; 13(10):. PubMed ID: 38792511
    [No Abstract]   [Full Text] [Related]  

  • 24. Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI.
    Shen H; Wang L; Liu Y; Hu D
    Neuroimage; 2010 Feb; 49(4):3110-21. PubMed ID: 19931396
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-center machine learning in imaging psychiatry: A meta-model approach.
    Dluhoš P; Schwarz D; Cahn W; van Haren N; Kahn R; Španiel F; Horáček J; Kašpárek T; Schnack H
    Neuroimage; 2017 Jul; 155():10-24. PubMed ID: 28428048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using Low-Frequency Oscillations to Detect Temporal Lobe Epilepsy with Machine Learning.
    Hwang G; Nair VA; Mathis J; Cook CJ; Mohanty R; Zhao G; Tellapragada N; Ustine C; Nwoke OO; Rivera-Bonet C; Rozman M; Allen L; Forseth C; Almane DN; Kraegel P; Nencka A; Felton E; Struck AF; Birn R; Maganti R; Conant LL; Humphries CJ; Hermann B; Raghavan M; DeYoe EA; Binder JR; Meyerand E; Prabhakaran V
    Brain Connect; 2019 Mar; 9(2):184-193. PubMed ID: 30803273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets.
    Yoo K; Rosenberg MD; Hsu WT; Zhang S; Li CR; Scheinost D; Constable RT; Chun MM
    Neuroimage; 2018 Feb; 167():11-22. PubMed ID: 29122720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Single-modal neuroimaging computer aided diagnosis for schizophrenia based on ensemble learning using privileged information].
    Shen L; Wang Q; Shi J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Jun; 37(3):405-411. PubMed ID: 32597081
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data.
    Saccà V; Sarica A; Novellino F; Barone S; Tallarico T; Filippelli E; Granata A; Chiriaco C; Bruno Bossio R; Valentino P; Quattrone A
    Brain Imaging Behav; 2019 Aug; 13(4):1103-1114. PubMed ID: 29992392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine Learning Evidence for Sex Differences Consistently Influences Resting-State Functional Magnetic Resonance Imaging Fluctuations Across Multiple Independently Acquired Data Sets.
    Al Zoubi O; Misaki M; Tsuchiyagaito A; Zotev V; White E; Paulus M; Bodurka J
    Brain Connect; 2022 May; 12(4):348-361. PubMed ID: 34269609
    [No Abstract]   [Full Text] [Related]  

  • 31. Independent vector analysis for common subspace analysis: Application to multi-subject fMRI data yields meaningful subgroups of schizophrenia.
    Long Q; Bhinge S; Calhoun VD; Adali T
    Neuroimage; 2020 Aug; 216():116872. PubMed ID: 32353485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A meta-analysis and systematic review of single vs. multimodal neuroimaging techniques in the classification of psychosis.
    Porter A; Fei S; Damme KSF; Nusslock R; Gratton C; Mittal VA
    Mol Psychiatry; 2023 Aug; 28(8):3278-3292. PubMed ID: 37563277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example.
    Abraham A; Milham MP; Di Martino A; Craddock RC; Samaras D; Thirion B; Varoquaux G
    Neuroimage; 2017 Feb; 147():736-745. PubMed ID: 27865923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generalizability and Out-of-Sample Predictive Ability of Associations Between Neuromelanin-Sensitive Magnetic Resonance Imaging and Psychosis in Antipsychotic-Free Individuals.
    Wengler K; Baker SC; Velikovskaya A; Fogelson A; Girgis RR; Reyes-Madrigal F; Lee S; de la Fuente-Sandoval C; Ojeil N; Horga G
    JAMA Psychiatry; 2024 Feb; 81(2):198-208. PubMed ID: 37938847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multisite schizophrenia classification by integrating structural magnetic resonance imaging data with polygenic risk score.
    Hu K; Wang M; Liu Y; Yan H; Song M; Chen J; Chen Y; Wang H; Guo H; Wan P; Lv L; Yang Y; Li P; Lu L; Yan J; Wang H; Zhang H; Zhang D; Wu H; Ning Y; Jiang T; Liu B
    Neuroimage Clin; 2021; 32():102860. PubMed ID: 34749286
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting individual variability in task-evoked brain activity in schizophrenia.
    Tik N; Livny A; Gal S; Gigi K; Tsarfaty G; Weiser M; Tavor I
    Hum Brain Mapp; 2021 Aug; 42(12):3983-3992. PubMed ID: 34021674
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reading the (functional) writing on the (structural) wall: Multimodal fusion of brain structure and function via a deep neural network based translation approach reveals novel impairments in schizophrenia.
    Plis SM; Amin MF; Chekroud A; Hjelm D; Damaraju E; Lee HJ; Bustillo JR; Cho K; Pearlson GD; Calhoun VD
    Neuroimage; 2018 Nov; 181():734-747. PubMed ID: 30055372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting Response to Repetitive Transcranial Magnetic Stimulation in Patients With Schizophrenia Using Structural Magnetic Resonance Imaging: A Multisite Machine Learning Analysis.
    Koutsouleris N; Wobrock T; Guse B; Langguth B; Landgrebe M; Eichhammer P; Frank E; Cordes J; Wölwer W; Musso F; Winterer G; Gaebel W; Hajak G; Ohmann C; Verde PE; Rietschel M; Ahmed R; Honer WG; Dwyer D; Ghaseminejad F; Dechent P; Malchow B; Kreuzer PM; Poeppl TB; Schneider-Axmann T; Falkai P; Hasan A
    Schizophr Bull; 2018 Aug; 44(5):1021-1034. PubMed ID: 28981875
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multimodal classification of drug-naïve first-episode schizophrenia combining anatomical, diffusion and resting state functional resonance imaging.
    Zhuang H; Liu R; Wu C; Meng Z; Wang D; Liu D; Liu M; Li Y
    Neurosci Lett; 2019 Jul; 705():87-93. PubMed ID: 31022433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Classification of amyotrophic lateral sclerosis by brain volume, connectivity, and network dynamics.
    Thome J; Steinbach R; Grosskreutz J; Durstewitz D; Koppe G
    Hum Brain Mapp; 2022 Feb; 43(2):681-699. PubMed ID: 34655259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.