These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 31571354)

  • 41. All-Solid-State Lithium-Organic Batteries Comprising Single-Ion Polymer Nanoparticle Electrolytes.
    Kim B; Kang H; Kim K; Wang RY; Park MJ
    ChemSusChem; 2020 May; 13(9):2271-2279. PubMed ID: 32207562
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exploring Oxygen Activity in the High Energy P2-Type Na
    Ma C; Alvarado J; Xu J; Clément RJ; Kodur M; Tong W; Grey CP; Meng YS
    J Am Chem Soc; 2017 Apr; 139(13):4835-4845. PubMed ID: 28271898
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-Defect-Density Graphite for Superior-Performance Aluminum-Ion Batteries with Ultra-Fast Charging and Stable Long Life.
    Kim J; Raj MR; Lee G
    Nanomicro Lett; 2021 Aug; 13(1):171. PubMed ID: 34370082
    [TBL] [Abstract][Full Text] [Related]  

  • 45. P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries.
    Yabuuchi N; Kajiyama M; Iwatate J; Nishikawa H; Hitomi S; Okuyama R; Usui R; Yamada Y; Komaba S
    Nat Mater; 2012 Apr; 11(6):512-7. PubMed ID: 22543301
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cuprous Self-Doping Regulated Mesoporous CuS Nanotube Cathode Materials for Rechargeable Magnesium Batteries.
    Du C; Zhu Y; Wang Z; Wang L; Younas W; Ma X; Cao C
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35035-35042. PubMed ID: 32667190
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Facile Synthesis of Diazaanthraquinone Dimers as High-Capacity Organic Cathode Materials for Rechargeable Lithium Batteries.
    Zhang P; Gan X; Huang L; Wang J; Li M; Hu Z; Wang R; Yu T; Song Z
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):14929-14939. PubMed ID: 38483071
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mass-Producible, Quasi-Zero-Strain, Lattice-Water-Rich Inorganic Open-Frameworks for Ultrafast-Charging and Long-Cycling Zinc-Ion Batteries.
    Yang X; Deng W; Chen M; Wang Y; Sun CF
    Adv Mater; 2020 Nov; 32(45):e2003592. PubMed ID: 33015911
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modulating Ion Diffusivity and Electrode Conductivity of Carbon Nanotube@Mesoporous Carbon Fibers for High Performance Aluminum-Selenium Batteries.
    Kong Y; Nanjundan AK; Liu Y; Song H; Huang X; Yu C
    Small; 2019 Dec; 15(51):e1904310. PubMed ID: 31724826
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Water-Pillared Sodium Vanadium Bronze Nanowires for Enhanced Rechargeable Magnesium Ion Storage.
    Sun R; Ji X; Luo C; Hou S; Hu P; Pu X; Cao L; Mai L; Wang C
    Small; 2020 Jul; 16(30):e2000741. PubMed ID: 32578349
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Facile Synthesis of Ultra-Small Few-Layer Nanostructured MoSe
    Zeng L; Kang B; Luo F; Fang Y; Zheng C; Liu J; Liu R; Li X; Chen Q; Wei M; Qian Q
    Chemistry; 2019 Oct; 25(58):13411-13421. PubMed ID: 31421000
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries.
    Luo C; Xu GL; Ji X; Hou S; Chen L; Wang F; Jiang J; Chen Z; Ren Y; Amine K; Wang C
    Angew Chem Int Ed Engl; 2018 Mar; 57(11):2879-2883. PubMed ID: 29378088
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A High Potential Polyanion Cathode Material for Rechargeable Mg-Ion Batteries.
    Li C; Lin L; Wu W; Sun X
    Small Methods; 2022 Aug; 6(8):e2200363. PubMed ID: 35689302
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly Stable and High Rate-Performance Na-Ion Batteries Using Polyanionic Anthraquinone as the Organic Cathode.
    Tang W; Liang R; Li D; Yu Q; Hu J; Cao B; Fan C
    ChemSusChem; 2019 May; 12(10):2181-2185. PubMed ID: 30896083
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Zn-Ion Batteries: Boosting the Rate Capability and Low-temperature Performance by Combining Structure and Morphology Engineering.
    Wang F; Li Y; Zhu W; Ge X; Cui H; Feng K; Liu S; Yang X
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34468-34476. PubMed ID: 34260197
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultrafast-Charging Silicon-Based Coral-Like Network Anodes for Lithium-Ion Batteries with High Energy and Power Densities.
    Wang B; Ryu J; Choi S; Zhang X; Pribat D; Li X; Zhi L; Park S; Ruoff RS
    ACS Nano; 2019 Feb; 13(2):2307-2315. PubMed ID: 30707012
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Unveiling the Role of Charge Dilution and Anionic Chemistry in Enabling High-Rate p-Type Polymer Cathodes for Dual-Ion Batteries.
    Zhong L; Zhang Y; Li J; Fang L; Liu C; Wang X; Zhang Z; Yu D
    ACS Nano; 2023 Sep; 17(18):18190-18199. PubMed ID: 37706655
    [TBL] [Abstract][Full Text] [Related]  

  • 58. On the Mechanism of the Improved Operation Voltage of Rhombohedral Nickel Hexacyanoferrate as Cathodes for Sodium-Ion Batteries.
    Ji Z; Han B; Liang H; Zhou C; Gao Q; Xia K; Wu J
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33619-33625. PubMed ID: 27960427
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bio-Inspired Isoalloxazine Redox Moieties for Rechargeable Aqueous Zinc-Ion Batteries.
    Cheng L; Liang Y; Zhu Q; Yu D; Chen M; Liang J; Wang H
    Chem Asian J; 2020 Apr; 15(8):1290-1295. PubMed ID: 32166912
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Conversion of MoS
    Zhang Y; Tao H; Du S; Yang X
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11327-11337. PubMed ID: 30839188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.