BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31571479)

  • 1. Computational Study of the Oxidation of Guanine To Form 5-Carboxyamido-5-formamido-2-iminohydantoin (2Ih).
    Hebert SP; Schlegel HB
    Chem Res Toxicol; 2019 Nov; 32(11):2295-2304. PubMed ID: 31571479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Investigation into the Oxidation of Guanine to Form Imidazolone (Iz) and Related Degradation Products.
    Hebert SP; Schlegel HB
    Chem Res Toxicol; 2020 Apr; 33(4):1010-1027. PubMed ID: 32119534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemistry of ROS-mediated oxidation to the guanine base in DNA and its biological consequences.
    Fleming AM; Burrows CJ
    Int J Radiat Biol; 2022; 98(3):452-460. PubMed ID: 34747670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Study of the Radical Mediated Mechanism of the Formation of C8, C5, and C4 Guanine:Lysine Adducts in the Presence of the Benzophenone Photosensitizer.
    Thapa B; Munk BH; Burrows CJ; Schlegel HB
    Chem Res Toxicol; 2016 Sep; 29(9):1396-409. PubMed ID: 27479718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lifetimes and reaction pathways of guanine radical cations and neutral guanine radicals in an oligonucleotide in aqueous solutions.
    Rokhlenko Y; Geacintov NE; Shafirovich V
    J Am Chem Soc; 2012 Mar; 134(10):4955-62. PubMed ID: 22329445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Study of the pH-Dependent Competition between Carbonate and Thymine Addition to the Guanine Radical.
    Hebert SP; Schlegel HB
    Chem Res Toxicol; 2019 Jan; 32(1):195-210. PubMed ID: 30592213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Study of Oxidation of Guanine by Singlet Oxygen (
    Thapa B; Munk BH; Burrows CJ; Schlegel HB
    Chemistry; 2017 Apr; 23(24):5804-5813. PubMed ID: 28249102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Study of the Formation of C8, C5, and C4 Guanine:Lysine Adducts via Oxidation of Guanine by Sulfate Radical Anion.
    Thapa B; Hebert SP; Munk BH; Burrows CJ; Schlegel HB
    J Phys Chem A; 2019 Jun; 123(24):5150-5163. PubMed ID: 31140806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the 5-Carboxamido-5-Formamido-2-Iminohydantoin Structural Isomerization Equilibria.
    Chabot MB; Fleming AM; Burrows CJ
    J Org Chem; 2022 Sep; 87(17):11865-11870. PubMed ID: 35960780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational prediction of one-electron reduction potentials and acid dissociation constants for guanine oxidation intermediates and products.
    Psciuk BT; Schlegel HB
    J Phys Chem B; 2013 Aug; 117(32):9518-31. PubMed ID: 23875631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 5-Carboxamido-5-formamido-2-iminohydantoin, in Addition to 8-oxo-7,8-Dihydroguanine, Is the Major Product of the Iron-Fenton or X-ray Radiation-Induced Oxidation of Guanine under Aerobic Reducing Conditions in Nucleoside and DNA Contexts.
    Alshykhly OR; Fleming AM; Burrows CJ
    J Org Chem; 2015 Jul; 80(14):6996-7007. PubMed ID: 26092110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An exploration of mechanisms for the transformation of 8-oxoguanine to guanidinohydantoin and spiroiminodihydantoin by density functional theory.
    Munk BH; Burrows CJ; Schlegel HB
    J Am Chem Soc; 2008 Apr; 130(15):5245-56. PubMed ID: 18355018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guanine oxidation product 5-carboxamido-5-formamido-2-iminohydantoin induces mutations when bypassed by DNA polymerases and is a substrate for base excision repair.
    Alshykhly OR; Fleming AM; Burrows CJ
    Chem Res Toxicol; 2015 Sep; 28(9):1861-71. PubMed ID: 26313343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. G-quadruplex folds of the human telomere sequence alter the site reactivity and reaction pathway of guanine oxidation compared to duplex DNA.
    Fleming AM; Burrows CJ
    Chem Res Toxicol; 2013 Apr; 26(4):593-607. PubMed ID: 23438298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and processing of DNA damage substrates for the hNEIL enzymes.
    Fleming AM; Burrows CJ
    Free Radic Biol Med; 2017 Jun; 107():35-52. PubMed ID: 27880870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the Major Product of Guanine Oxidation in DNA by Ozone.
    Chabot MB; Fleming AM; Burrows CJ
    Chem Res Toxicol; 2022 Oct; 35(10):1809-1813. PubMed ID: 35642826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of formation of 8-oxoguanine due to reactions of one and two OH* radicals and the H2O2 molecule with guanine: A quantum computational study.
    Jena NR; Mishra PC
    J Phys Chem B; 2005 Jul; 109(29):14205-18. PubMed ID: 16852784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 2Ih and
    Karwowski BT
    Molecules; 2023 Feb; 28(5):. PubMed ID: 36903425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of mechanisms for the transformation of 8-hydroxy guanine radical to FAPyG by density functional theory.
    Munk BH; Burrows CJ; Schlegel HB
    Chem Res Toxicol; 2007 Mar; 20(3):432-44. PubMed ID: 17316026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rates of chemical cleavage of DNA and RNA oligomers containing guanine oxidation products.
    Fleming AM; Alshykhly O; Zhu J; Muller JG; Burrows CJ
    Chem Res Toxicol; 2015 Jun; 28(6):1292-300. PubMed ID: 25853314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.