BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 31571490)

  • 1. Density Functional Theory (DFT)-Based Bonding Analysis Correlates Ligand Field Strength with
    Kaneko M; Kato A; Nakashima S; Kitatsuji Y
    Inorg Chem; 2019 Oct; 58(20):14024-14033. PubMed ID: 31571490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ruthenium nitrosyl complexes with 1,4,7-trithiacyclononane and 2,2'-bipyridine (bpy) or 2-phenylazopyridine (pap) coligands. Electronic structure and reactivity aspects.
    De P; Maji S; Chowdhury AD; Mobin SM; Mondal TK; Paretzki A; Lahiri GK
    Dalton Trans; 2011 Dec; 40(46):12527-39. PubMed ID: 21986798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 15N NMR and Electrochemical Studies of [Ru(II)(hedta)](-) Complexes of NO, NO(+), NO(2)(-), and NO(-).
    Chen Y; Lin FT; Shepherd RE
    Inorg Chem; 1999 Mar; 38(5):973-983. PubMed ID: 11670870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand field and density functional descriptions of the d-states and bonding in transition metal complexes.
    Deeth RJ
    Faraday Discuss; 2003; 124():379-91; discussion 393-403, 453-5. PubMed ID: 14527227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density functional theory calculations on ruthenium(IV) bis(amido) porphyrins: search for a broader perspective of heme protein compound II intermediates.
    Gonzalez E; Brothers PJ; Ghosh A
    J Phys Chem B; 2010 Nov; 114(46):15380-8. PubMed ID: 20979402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unexpected nitrosyl-group bending in six-coordinate [M(NO)](6) sigma-bonded aryl(iron) and -(ruthenium) porphyrins.
    Richter-Addo GB; Wheeler RA; Hixson CA; Chen L; Khan MA; Ellison MK; Schulz CE; Scheidt WR
    J Am Chem Soc; 2001 Jul; 123(26):6314-26. PubMed ID: 11427056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. d-orbital energy levels in planar [M
    Deeth RJ
    Dalton Trans; 2020 Jul; 49(28):9641-9650. PubMed ID: 32618313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complexation and bonding studies on [Ru(NO)(H
    Kato A; Kaneko M; Nakashima S
    RSC Adv; 2020 Jun; 10(41):24434-24443. PubMed ID: 35516215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What is the best bonding model of the (σ-H-BR) species bound to a transition metal? Bonding analysis in complexes [(H)2Cl(PMe3)2M(σ-H-BR)] (M = Fe, Ru, Os).
    Pandey KK
    Dalton Trans; 2012 Mar; 41(11):3278-86. PubMed ID: 22290219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitroxyl as a ligand in ruthenium tetraammine systems: a density functional theory study.
    Da Silva AC; Da Silva JL; Franco DW
    Dalton Trans; 2016 Mar; 45(11):4907-15. PubMed ID: 26879818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV-visible absorption spectra of [Ru(E)(E')(CO)(2)(iPr-DAB)] (E = E' = SnPh(3) or Cl; E = SnPh(3) or Cl, E' = CH(3); iPr-DAB = N,N'-Di-isopropyl-1,4-diaza-1,3-butadiene): combination of CASSCF/CASPT2 and TD-DFT calculations.
    Turki M; Daniel C; Zális S; Vlcek A; van Slageren J; Stufkens DJ
    J Am Chem Soc; 2001 Nov; 123(46):11431-40. PubMed ID: 11707120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ru(II) Polypyridyl Complexes Derived from Tetradentate Ancillary Ligands for Effective Photocaging.
    Li A; Turro C; Kodanko JJ
    Acc Chem Res; 2018 Jun; 51(6):1415-1421. PubMed ID: 29870227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-to-Ligand Charge-Transfer Emissions of Ruthenium(II) Pentaammine Complexes with Monodentate Aromatic Acceptor Ligands and Distortion Patterns of their Lowest Energy Triplet Excited States.
    Tsai CN; Mazumder S; Zhang XZ; Schlegel HB; Chen YJ; Endicott JF
    Inorg Chem; 2015 Sep; 54(17):8495-508. PubMed ID: 26302226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures, spectroscopic properties and redox potentials of quaterpyridyl Ru(II) photosensitizer and its derivatives for solar energy cell: a density functional study.
    Pan QJ; Guo YR; Li L; Odoh SO; Fu HG; Zhang HX
    Phys Chem Chem Phys; 2011 Aug; 13(32):14481-9. PubMed ID: 21735037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Planar three-coordinate high-spin Fe(II) complexes with large orbital angular momentum: Mössbauer, electron paramagnetic resonance, and electronic structure studies.
    Andres H; Bominaar EL; Smith JM; Eckert NA; Holland PL; Münck E
    J Am Chem Soc; 2002 Mar; 124(12):3012-25. PubMed ID: 11902893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics and properties of metal-to-ligand charge-transfer excited states in 2,3-bis(2-pyridyl)pyrazine and 2,2'-bypyridine ruthenium complexes. Perturbation-theory-based correlations of optical absorption and emission parameters with electrochemistry and thermal kinetics and related Ab initio calculations.
    Seneviratne DS; Uddin J; Swayambunathan V; Schlegel HB; Endicott JF
    Inorg Chem; 2002 Mar; 41(6):1502-17. PubMed ID: 11896719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new photoactivable NO-releasing {Ru-NO}
    Cho JH; Kim M; You Y; Lee HI
    Chem Asian J; 2022 Jan; 17(2):e202101244. PubMed ID: 34921511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary coordination sphere effects in ruthenium(III) tetraammine complexes: role of the coordinated water molecule.
    Souza ML; Castellano EE; Telser J; Franco DW
    Inorg Chem; 2015 Feb; 54(4):2067-80. PubMed ID: 25654246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structures of ruthenium and osmium complexes of 9,10-phenanthrenequinone.
    Biswas MK; Patra SC; Maity AN; Ke SC; Adhikary ND; Ghosh P
    Inorg Chem; 2012 Jun; 51(12):6687-99. PubMed ID: 22663598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.