BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31572324)

  • 1. Highly Efficient Preparation of Cyclic Dinucleotides
    Lv Y; Sun Q; Wang X; Lu Y; Li Y; Yuan H; Zhu J; Zhu D
    Front Microbiol; 2019; 10():2111. PubMed ID: 31572324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass spectrometric characterization of cyclic dinucleotides (CDNs) in vivo.
    Annibal A; Ripa R; Ballhysa E; Latza C; Hochhard N; Antebi A
    Anal Bioanal Chem; 2021 Nov; 413(26):6457-6468. PubMed ID: 34476522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical synthesis, purification, and characterization of 3'-5'-linked canonical cyclic dinucleotides (CDNs).
    Wang C; Hao M; Qi Q; Chen Y; Hartig JS
    Methods Enzymol; 2019; 625():41-59. PubMed ID: 31455536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct Dynamic and Conformational Features of Human STING in Response to 2'3'-cGAMP and c-di-GMP.
    Guo J; Wang J; Fan J; Zhang Y; Dong W; Chen CP
    Chembiochem; 2019 Jul; 20(14):1838-1847. PubMed ID: 30895657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures of c-di-GMP/cGAMP degrading phosphodiesterase VcEAL: identification of a novel conformational switch and its implication.
    Yadav M; Pal K; Sen U
    Biochem J; 2019 Nov; 476(21):3333-3353. PubMed ID: 31647518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of Cyclic Dinucleotides by STING.
    Du XX; Su XD
    Methods Mol Biol; 2017; 1657():59-69. PubMed ID: 28889286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Loss of Responsiveness to Exogenous but Not Endogenous Cyclic-Dinucleotides in Mice Expressing STING-R231H.
    Walker MM; Kim S; Crisler WJ; Nguyen K; Lenz LL; Cambier JC; Getahun A
    Front Immunol; 2020; 11():238. PubMed ID: 32153571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2',4'-LNA-Functionalized 5'-S-phosphorothioester CDNs as STING agonist.
    Yeboah SK; Zigli A; Sintim HO
    Chembiochem; 2024 May; ():e202400321. PubMed ID: 38720428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotechnological production of cyclic dinucleotides-Challenges and opportunities.
    Bartsch T; Becker M; Rolf J; Rosenthal K; Lütz S
    Biotechnol Bioeng; 2022 Mar; 119(3):677-684. PubMed ID: 34953086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replacement of oxygen with sulfur on the furanose ring of cyclic dinucleotides enhances the immunostimulatory effect
    Saito-Tarashima N; Kinoshita M; Igata Y; Kashiwabara Y; Minakawa N
    RSC Med Chem; 2021 Sep; 12(9):1519-1524. PubMed ID: 34671735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global proteomics of fibroblast cells treated with bacterial cyclic dinucleotides, c-di-GMP and c-di-AMP.
    Onyedibe KI; Elmanfi S; Aryal UK; Könönen E; Gürsoy UK; Sintim HO
    J Oral Microbiol; 2022; 14(1):2003617. PubMed ID: 34992733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, Synthesis, and Biochemical and Biological Evaluation of Novel 7-Deazapurine Cyclic Dinucleotide Analogues as STING Receptor Agonists.
    Vavřina Z; Perlíková P; Milisavljević N; Chevrier F; Smola M; Smith J; Dejmek M; Havlíček V; Buděšínský M; Liboska R; Vaneková L; Brynda J; Boura E; Řezáčová P; Hocek M; Birkuš G
    J Med Chem; 2022 Oct; 65(20):14082-14103. PubMed ID: 36201304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic di-GMP: second messenger extraordinaire.
    Jenal U; Reinders A; Lori C
    Nat Rev Microbiol; 2017 May; 15(5):271-284. PubMed ID: 28163311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile modes of cellular regulation via cyclic dinucleotides.
    Krasteva PV; Sondermann H
    Nat Chem Biol; 2017 Mar; 13(4):350-359. PubMed ID: 28328921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Flexibility and Conformation Features of Cyclic Dinucleotides in Aqueous Solutions.
    Che X; Zhang J; Zhu Y; Yang L; Quan H; Gao YQ
    J Phys Chem B; 2016 Mar; 120(10):2670-80. PubMed ID: 26878265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ever-expanding world of bacterial cyclic oligonucleotide second messengers.
    Yoon SH; Waters CM
    Curr Opin Microbiol; 2021 Apr; 60():96-103. PubMed ID: 33640793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, Synthesis and Biological Evaluation of (2',5' and 3'5'-Linked) cGAMP Analogs that Activate Stimulator of Interferon Genes (STING).
    Xie X; Liu J; Wang X
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33198423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A STING-based fluorescent polarization assay for monitoring activities of cyclic dinucleotide metabolizing enzymes.
    Karanja CW; Yeboah KS; Ong WWS; Sintim HO
    RSC Chem Biol; 2021 Feb; 2(1):206-214. PubMed ID: 34458783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient preparation of c-di-AMP at gram-scale using an immobilized Vibrio cholerae dinucleotide cyclase DncV.
    Sun Q; Lv Y; Zhang C; Wu W; Zhang R; Zhu C; Li YY; Yuan H; Zhu J; Zhu D
    Enzyme Microb Technol; 2021 Feb; 143():109700. PubMed ID: 33375968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The virus-induced cyclic dinucleotide 2'3'-c-di-GMP mediates STING-dependent antiviral immunity in Drosophila.
    Cai H; Li L; Slavik KM; Huang J; Yin T; Ai X; Hédelin L; Haas G; Xiang Z; Yang Y; Li X; Chen Y; Wei Z; Deng H; Chen D; Jiao R; Martins N; Meignin C; Kranzusch PJ; Imler JL
    Immunity; 2023 Sep; 56(9):1991-2005.e9. PubMed ID: 37659413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.