BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 31572493)

  • 1. Development and characterization of a CRISPR/Cas9n-based multiplex genome editing system for
    Liu D; Huang C; Guo J; Zhang P; Chen T; Wang Z; Zhao X
    Biotechnol Biofuels; 2019; 12():197. PubMed ID: 31572493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 3. Design and Construction of Portable CRISPR-Cpf1-Mediated Genome Editing in
    Hao W; Suo F; Lin Q; Chen Q; Zhou L; Liu Z; Cui W; Zhou Z
    Front Bioeng Biotechnol; 2020; 8():524676. PubMed ID: 32984297
    [No Abstract]   [Full Text] [Related]  

  • 4. Development and application of a rapid all-in-one plasmid CRISPR-Cas9 system for iterative genome editing in Bacillus subtilis.
    Zou Y; Qiu L; Xie A; Han W; Zhang S; Li J; Zhao S; Li Y; Liang Y; Hu Y
    Microb Cell Fact; 2022 Aug; 21(1):173. PubMed ID: 35999638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and application of a fast and efficient CRISPR-based genetic toolkit in Bacillus amyloliquefaciens LB1ba02.
    Xin Q; Chen Y; Chen Q; Wang B; Pan L
    Microb Cell Fact; 2022 May; 21(1):99. PubMed ID: 35643496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Barriers to simultaneous multilocus integration in Bacillus subtilis tumble down: development of a straightforward screening method for the colorimetric detection of one-step multiple gene insertion using the CRISPR-Cas9 system.
    Ferrando J; Filluelo O; Zeigler DR; Picart P
    Microb Cell Fact; 2023 Jan; 22(1):21. PubMed ID: 36721198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex gene editing and large DNA fragment deletion by the CRISPR/Cpf1-RecE/T system in Corynebacterium glutamicum.
    Zhao N; Li L; Luo G; Xie S; Lin Y; Han S; Huang Y; Zheng S
    J Ind Microbiol Biotechnol; 2020 Aug; 47(8):599-608. PubMed ID: 32876764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an efficient iterative genome editing method in Bacillus subtilis using the CRISPR-AsCpf1 system.
    Zhao X; Chen X; Xue Y; Wang X
    J Basic Microbiol; 2022 Jul; 62(7):824-832. PubMed ID: 35655368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in
    Yu S; Price MA; Wang Y; Liu Y; Guo Y; Ni X; Rosser SJ; Bi C; Wang M
    ACS Synth Biol; 2020 Jul; 9(7):1781-1789. PubMed ID: 32551562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces.
    Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561
    [No Abstract]   [Full Text] [Related]  

  • 12. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CAMERS-B: CRISPR/Cpf1 assisted multiple-genes editing and regulation system for Bacillus subtilis.
    Wu Y; Liu Y; Lv X; Li J; Du G; Liu L
    Biotechnol Bioeng; 2020 Jun; 117(6):1817-1825. PubMed ID: 32129468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing.
    Li Y; Lin Z; Huang C; Zhang Y; Wang Z; Tang YJ; Chen T; Zhao X
    Metab Eng; 2015 Sep; 31():13-21. PubMed ID: 26141150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
    Hong KQ; Liu DY; Chen T; Wang ZW
    World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis.
    García-Moyano A; Larsen Ø; Gaykawad S; Christakou E; Boccadoro C; Puntervoll P; Bjerga GEK
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33097498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cas9-nickase-mediated genome editing corrects hereditary tyrosinemia in rats.
    Shao Y; Wang L; Guo N; Wang S; Yang L; Li Y; Wang M; Yin S; Han H; Zeng L; Zhang L; Hui L; Ding Q; Zhang J; Geng H; Liu M; Li D
    J Biol Chem; 2018 May; 293(18):6883-6892. PubMed ID: 29507093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Highly Efficient CRISPR-Cas9-Mediated Large Genomic Deletion in
    So Y; Park SY; Park EH; Park SH; Kim EJ; Pan JG; Choi SK
    Front Microbiol; 2017; 8():1167. PubMed ID: 28690606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas9-mediated Large Cluster Deletion and Multiplex Genome Editing in
    Meliawati M; Teckentrup C; Schmid J
    ACS Synth Biol; 2022 Jan; 11(1):77-84. PubMed ID: 34914351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel combined Cre-Cas system for improved chromosome editing in Bacillus subtilis.
    Cai MZ; Chen PT
    J Biosci Bioeng; 2021 Aug; 132(2):113-119. PubMed ID: 33994114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.