BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 31572493)

  • 21. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.
    Zhang J; Zong W; Hong W; Zhang ZT; Wang Y
    Metab Eng; 2018 May; 47():49-59. PubMed ID: 29530750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The CRISPR toolbox for the gram-positive model bacterium
    Zocca VFB; Corrêa GG; Lins MRDCR; de Jesus VN; Tavares LF; Amorim LADS; Kundlatsch GE; Pedrolli DB
    Crit Rev Biotechnol; 2022 Sep; 42(6):813-826. PubMed ID: 34719304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of multiplexed CRISPR/Cas9 system for highly efficient genome editing in Setaria viridis.
    Weiss T; Wang C; Kang X; Zhao H; Elena Gamo M; Starker CG; Crisp PA; Zhou P; Springer NM; Voytas DF; Zhang F
    Plant J; 2020 Nov; 104(3):828-838. PubMed ID: 32786122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces.
    Huang H; Zheng G; Jiang W; Hu H; Lu Y
    Acta Biochim Biophys Sin (Shanghai); 2015 Apr; 47(4):231-43. PubMed ID: 25739462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
    Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T
    Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A versatile toolbox for CRISPR-based genome engineering in Pichia pastoris.
    Liao X; Li L; Jameel A; Xing XH; Zhang C
    Appl Microbiol Biotechnol; 2021 Dec; 105(24):9211-9218. PubMed ID: 34773154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiplex CRISPR/Cas9-mediated genome editing of the FAD2 gene in rice: a model genome editing system for oil palm.
    Bahariah B; Masani MYA; Rasid OA; Parveez GKA
    J Genet Eng Biotechnol; 2021 Jun; 19(1):86. PubMed ID: 34115267
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR-derived genome editing technologies for metabolic engineering.
    Nishida K; Kondo A
    Metab Eng; 2021 Jan; 63():141-147. PubMed ID: 33307189
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient Large-Scale and Scarless Genome Engineering Enables the Construction and Screening of
    Tian J; Xing B; Li M; Xu C; Huo YX; Guo S
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563243
    [No Abstract]   [Full Text] [Related]  

  • 31. Multiplexed CRISPR-Cpf1-Mediated Genome Editing in Clostridium difficile toward the Understanding of Pathogenesis of C. difficile Infection.
    Hong W; Zhang J; Cui G; Wang L; Wang Y
    ACS Synth Biol; 2018 Jun; 7(6):1588-1600. PubMed ID: 29863336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Programmed gRNA Removal System for CRISPR-Cas9-Mediated Multi-Round Genome Editing in
    Lim H; Choi SK
    Front Microbiol; 2019; 10():1140. PubMed ID: 31164882
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 34. High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize.
    Qi W; Zhu T; Tian Z; Li C; Zhang W; Song R
    BMC Biotechnol; 2016 Aug; 16(1):58. PubMed ID: 27515683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous Multiplex Genome Engineering
    Deng A; Sun Z; Wang T; Cui D; Li L; Liu S; Huang F; Wen T
    Front Microbiol; 2021; 12():714449. PubMed ID: 34484154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient expression of γ-glutamyl transpeptidase in Bacillus subtilis via CRISPR/Cas9n and its immobilization.
    Chen Q; Wang B; Pan L
    Appl Microbiol Biotechnol; 2024 Jan; 108(1):149. PubMed ID: 38240797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large chromosomal segment deletions by CRISPR/LbCpf1-mediated multiplex gene editing in soybean.
    Duan K; Cheng Y; Ji J; Wang C; Wei Y; Wang Y
    J Integr Plant Biol; 2021 Sep; 63(9):1620-1631. PubMed ID: 34331750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiplex CRISPR/Cas9-based genome engineering enhanced by Drosha-mediated sgRNA-shRNA structure.
    Yan Q; Xu K; Xing J; Zhang T; Wang X; Wei Z; Ren C; Liu Z; Shao S; Zhang Z
    Sci Rep; 2016 Dec; 6():38970. PubMed ID: 27941919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani.
    Zhang WW; Matlashewski G
    mBio; 2015 Jul; 6(4):e00861. PubMed ID: 26199327
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiplex Genome Editing in Yeast by CRISPR/Cas9 - A Potent and Agile Tool to Reconstruct Complex Metabolic Pathways.
    Utomo JC; Hodgins CL; Ro DK
    Front Plant Sci; 2021; 12():719148. PubMed ID: 34421973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.