These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31572830)

  • 1. Decoding Cell Type Diversity Within the Spinal Cord.
    Dobrott CI; Sathyamurthy A; Levine AJ
    Curr Opin Physiol; 2019 Apr; 8():1-6. PubMed ID: 31572830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A harmonized atlas of mouse spinal cord cell types and their spatial organization.
    Russ DE; Cross RBP; Li L; Koch SC; Matson KJE; Yadav A; Alkaslasi MR; Lee DI; Le Pichon CE; Menon V; Levine AJ
    Nat Commun; 2021 Sep; 12(1):5722. PubMed ID: 34588430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the organization and modulation of spinal locomotor central pattern generators.
    Gordon IT; Whelan PJ
    J Exp Biol; 2006 Jun; 209(Pt 11):2007-14. PubMed ID: 16709903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using an upright preparation to identify and characterize locomotor related neurons across the transverse plane of the neonatal mouse spinal cord.
    Rancic V; Haque F; Ballanyi K; Gosgnach S
    J Neurosci Methods; 2019 Jul; 323():90-97. PubMed ID: 31132372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of postural muscle tone to full expression of posture and locomotor movements: multi-faceted analyses of its setting brainstem-spinal cord mechanisms in the cat.
    Mori S
    Jpn J Physiol; 1989; 39(6):785-809. PubMed ID: 2698966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord.
    Petracca YL; Sartoretti MM; Di Bella DJ; Marin-Burgin A; Carcagno AL; Schinder AF; Lanuza GM
    Development; 2016 Mar; 143(5):880-91. PubMed ID: 26839365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord.
    Kiehn O; Butt SJ
    Prog Neurobiol; 2003 Jul; 70(4):347-61. PubMed ID: 12963092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional networks regulating neuronal identity in the developing spinal cord.
    Lee SK; Pfaff SL
    Nat Neurosci; 2001 Nov; 4 Suppl():1183-91. PubMed ID: 11687828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Temporal Neurogenesis Patterning of Spinal p3-V3 Interneurons into Divergent Subpopulation Assemblies.
    Deska-Gauthier D; Borowska-Fielding J; Jones CT; Zhang Y
    J Neurosci; 2020 Feb; 40(7):1440-1452. PubMed ID: 31826942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells.
    Bonner JF; Steward O
    Brain Res; 2015 Sep; 1619():115-23. PubMed ID: 25591483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Lesioned Spinal Cord Is a "New" Spinal Cord: Evidence from Functional Changes after Spinal Injury in Lamprey.
    Parker D
    Front Neural Circuits; 2017; 11():84. PubMed ID: 29163065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane currents and morphological properties of neurons and glial cells in the spinal cord and filum terminale of the frog.
    Chvátal A; Andĕrová M; Ziak D; Orkand RK; Syková E
    Neurosci Res; 2001 May; 40(1):23-35. PubMed ID: 11311402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Traumatic injury of the spinal cord and nitric oxide.
    Marsala J; Orendácová J; Lukácová N; Vanický I
    Prog Brain Res; 2007; 161():171-83. PubMed ID: 17618976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glial cell heterogeneity in the mammalian spinal cord.
    Miller RH; Zhang H; Fok-Seang J
    Perspect Dev Neurobiol; 1994; 2(3):225-31. PubMed ID: 7850355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Derivation of Specific Neural Populations From Pluripotent Cells for Understanding and Treatment of Spinal Cord Injury.
    White N; Sakiyama-Elbert SE
    Dev Dyn; 2019 Jan; 248(1):78-87. PubMed ID: 30324766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraocular grafts of fetal rat spinal cord: a Golgi study of neuronal morphology and organization.
    Broton JG; Yezierski RP; Seiger A
    Exp Neurol; 1990 May; 108(2):122-9. PubMed ID: 1692285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular control of cell type diversity in the developing spinal cord.
    Yamada T; Karunaratne A; Hargrave M
    Clin Exp Pharmacol Physiol; 1999 Sep; 26(9):741-5. PubMed ID: 10499165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of high quality brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) RNA from isolated populations of rat spinal cord motor neurons obtained by Laser Capture Microdissection (LCM).
    Mehta P; Premkumar B; Morris R
    Neurosci Lett; 2016 Aug; 627():132-8. PubMed ID: 27260986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of engrafted neuronal-restricted precursor cells is inhibited in the traumatically injured spinal cord.
    Cao QL; Howard RM; Dennison JB; Whittemore SR
    Exp Neurol; 2002 Oct; 177(2):349-59. PubMed ID: 12429182
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.