BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31572853)

  • 1. Increased Butanol Yields through Cosubstrate Fermentation of Jerusalem Artichoke Tubers and Crude Glycerol by
    Sarchami T; Rehmann L
    ACS Omega; 2019 Sep; 4(13):15521-15529. PubMed ID: 31572853
    [No Abstract]   [Full Text] [Related]  

  • 2. Enhancing butanol production with Clostridium pasteurianum CH4 using sequential glucose-glycerol addition and simultaneous dual-substrate cultivation strategies.
    Kao WC; Lin DS; Cheng CL; Chen BY; Lin CY; Chang JS
    Bioresour Technol; 2013 May; 135():324-30. PubMed ID: 23127835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum.
    Malaviya A; Jang YS; Lee SY
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1485-94. PubMed ID: 22052388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of fermentation condition favoring butanol production from glycerol by Clostridium pasteurianum DSM 525.
    Sarchami T; Johnson E; Rehmann L
    Bioresour Technol; 2016 May; 208():73-80. PubMed ID: 26922315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved n-butanol production by a non-acetone producing Clostridium pasteurianum DSMZ 525 in mixed substrate fermentation.
    Sabra W; Groeger C; Sharma PN; Zeng AP
    Appl Microbiol Biotechnol; 2014 May; 98(9):4267-76. PubMed ID: 24584460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of the Reductive 1,3-Propanediol Pathway Triggers Production of 1,2-Propanediol for Sustained Glycerol Fermentation by Clostridium pasteurianum.
    Pyne ME; Sokolenko S; Liu X; Srirangan K; Bruder MR; Aucoin MG; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Sep; 82(17):5375-88. PubMed ID: 27342556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentation of crude glycerol from biodiesel production by Clostridium pasteurianum.
    Jensen TO; Kvist T; Mikkelsen MJ; Christensen PV; Westermann P
    J Ind Microbiol Biotechnol; 2012 May; 39(5):709-17. PubMed ID: 22212343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole-genome sequence of an evolved Clostridium pasteurianum strain reveals Spo0A deficiency responsible for increased butanol production and superior growth.
    Sandoval NR; Venkataramanan KP; Groth TS; Papoutsakis ET
    Biotechnol Biofuels; 2015; 8():227. PubMed ID: 26705421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermentation of glycerol by Clostridium pasteurianum--batch and continuous culture studies.
    Biebl H
    J Ind Microbiol Biotechnol; 2001 Jul; 27(1):18-26. PubMed ID: 11598806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective isopropanol-butanol (IB) fermentation with high butanol content using a newly isolated
    Youn SH; Lee KM; Kim KY; Lee SM; Woo HM; Um Y
    Biotechnol Biofuels; 2016; 9():230. PubMed ID: 27800016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of 1,3-PDO and butanol by a mutant strain of Clostridium pasteurianum with increased tolerance towards crude glycerol.
    Jensen TO; Kvist T; Mikkelsen MJ; Westermann P
    AMB Express; 2012 Aug; 2(1):44. PubMed ID: 22901717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of 1,3-propanediol production in fermentation of glycerol by Clostridium pasteurianum.
    Johnson EE; Rehmann L
    Bioresour Technol; 2016 Jun; 209():1-7. PubMed ID: 26946434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor.
    Huang J; Cai J; Wang J; Zhu X; Huang L; Yang ST; Xu Z
    Bioresour Technol; 2011 Feb; 102(4):3923-6. PubMed ID: 21169015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Butanol production from hydrolysate of Jerusalem artichoke juice by Clostridium acetobutylicum L7].
    Chen L; Xin C; Deng P; Ren J; Liang H; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):991-6. PubMed ID: 20954401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Butanol production from thin stillage using Clostridium pasteurianum.
    Ahn JH; Sang BI; Um Y
    Bioresour Technol; 2011 Apr; 102(7):4934-7. PubMed ID: 21316947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of zinc supplementation on the improved fructose/xylose utilization and butanol production during acetone-butanol-ethanol fermentation.
    Wu YD; Xue C; Chen LJ; Bai FW
    J Biosci Bioeng; 2016 Jan; 121(1):66-72. PubMed ID: 26149719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of butyric acid on butanol formation by Clostridium pasteurianum.
    Regestein L; Doerr EW; Staaden A; Rehmann L
    Bioresour Technol; 2015 Nov; 196():153-9. PubMed ID: 26233327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards improved butanol production through targeted genetic modification of Clostridium pasteurianum.
    Schwarz KM; Grosse-Honebrink A; Derecka K; Rotta C; Zhang Y; Minton NP
    Metab Eng; 2017 Mar; 40():124-137. PubMed ID: 28119139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High butanol production from glycerol by using Clostridium sp. strain CT7 integrated with membrane assisted pervaporation.
    Chen T; Xu F; Zhang W; Zhou J; Dong W; Jiang Y; Lu J; Fang Y; Jiang M; Xin F
    Bioresour Technol; 2019 Sep; 288():121530. PubMed ID: 31130345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-butanol production from glycerol with Clostridium pasteurianum CH4: the effects of butyrate addition and in situ butanol removal via membrane distillation.
    Lin DS; Yen HW; Kao WC; Cheng CL; Chen WM; Huang CC; Chang JS
    Biotechnol Biofuels; 2015; 8():168. PubMed ID: 26468321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.