BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31573062)

  • 1. Intraoperative Neuromonitoring in Surgery of Cauda Equina and Conus Medullaris Tumors.
    Taskiran E; Ulu MO; Akcil EF; Hanci M
    Turk Neurosurg; 2019; 29(6):909-914. PubMed ID: 31573062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using subdural strip electrodes to define functional sensory nerves and the most inferior functional portion of the conus medullaris during detethering surgeries for tethered cord syndrome: a pilot study.
    Yang CY; Liang ML; Chen HH; Chiu JW; Liao KK; Yang TF
    J Neurosurg Spine; 2018 Oct; 29(4):456-460. PubMed ID: 30004314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraoperative neurophysiology of the conus medullaris and cauda equina.
    Kothbauer KF; Deletis V
    Childs Nerv Syst; 2010 Feb; 26(2):247-53. PubMed ID: 19904544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraoperative neurophysiological mapping and monitoring in spinal tumor surgery: sirens or indispensable tools?
    Scibilia A; Terranova C; Rizzo V; Raffa G; Morelli A; Esposito F; Mallamace R; Buda G; Conti A; Quartarone A; Germanò A
    Neurosurg Focus; 2016 Aug; 41(2):E18. PubMed ID: 27476842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Application of intraoperative neurophysiological monitoring in spinal cord surgery].
    Lin GZ; Wang ZY; Liu B
    Beijing Da Xue Xue Bao Yi Xue Ban; 2012 Oct; 44(5):776-9. PubMed ID: 23073591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraoperative neurophysiology of the conus medullaris and cauda equina.
    Pang D
    Childs Nerv Syst; 2010 Apr; 26(4):411-2. PubMed ID: 20191273
    [No Abstract]   [Full Text] [Related]  

  • 7. Intraoperative neurophysiological monitoring for intradural extramedullary spinal tumors: predictive value and relevance of D-wave amplitude on surgical outcome during a 10-year experience.
    Ghadirpour R; Nasi D; Iaccarino C; Romano A; Motti L; Sabadini R; Valzania F; Servadei F
    J Neurosurg Spine; 2018 Nov; 30(2):259-267. PubMed ID: 30497134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraoperative neurophysiology in tethered cord surgery: techniques and results.
    Sala F; Squintani G; Tramontano V; Arcaro C; Faccioli F; Mazza C
    Childs Nerv Syst; 2013 Sep; 29(9):1611-24. PubMed ID: 24013331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraoperative neurophysiological monitoring for intradural extramedullary tumors: why not?
    Ghadirpour R; Nasi D; Iaccarino C; Giraldi D; Sabadini R; Motti L; Sala F; Servadei F
    Clin Neurol Neurosurg; 2015 Mar; 130():140-9. PubMed ID: 25618840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraoperative neurophysiologic monitoring with Hoffmann reflex during thoracic spine surgery.
    Feyissa AM; Tummala S
    J Clin Neurosci; 2015 Jun; 22(6):990-4. PubMed ID: 25769258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraoperative spinal cord monitoring using combined motor and sensory evoked potentials recorded from the spinal cord during surgery for intramedullary spinal cord tumor.
    Ando M; Tamaki T; Yoshida M; Kawakami M; Kubota S; Nakagawa Y; Iwasaki H; Tsutsui S; Yamada H
    Clin Neurol Neurosurg; 2015 Jun; 133():18-23. PubMed ID: 25837236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraoperative neurophysiological monitoring in pediatric neurosurgery: why, when, how?
    Sala F; Krzan MJ; Deletis V
    Childs Nerv Syst; 2002 Jul; 18(6-7):264-87. PubMed ID: 12172930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Motor Evoked Potential and Somatosensory Evoked Potential during Spine and Spinal Surgery].
    Fukuoka N
    Masui; 2015 May; 64(5):515-23. PubMed ID: 26422959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Usefulness of external anal sphincter EMG recording for intraoperative neuromonitoring of the sacral roots-a prospective study in dorsal rhizotomy.
    Sindou M; Joud A; Georgoulis G
    Acta Neurochir (Wien); 2021 Feb; 163(2):479-487. PubMed ID: 33064201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination of a nerve fiber that is the origin of a cauda equina tumor using acetylcholinesterase staining.
    Kamei N; Tanaka N; Arihiro K; Nakanishi K; Kotaka S; Adachi N; Ochi M
    Neuropathology; 2017 Oct; 37(5):415-419. PubMed ID: 28493390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conjunct SEP and MEP monitoring in resection of infratentorial lesions: lessons learned in a cohort of 210 patients.
    Kodama K; Javadi M; Seifert V; Szelényi A
    J Neurosurg; 2014 Dec; 121(6):1453-61. PubMed ID: 25216065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of motor and sensory evoked potentials in chronic cauda equina compression of the dog.
    Kim NH; Yang IH
    Eur Spine J; 1996; 5(5):338-44. PubMed ID: 8915640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in Multimodality Intraoperative Neurophysiological Monitoring Changes Between Spinal Intramedullary Ependymoma and Hemangioblastoma.
    Kim DG; Son YR; Park YS; Hyun SJ; Kim KJ; Jahng TA; Kim HJ; Park KS
    J Clin Neurophysiol; 2016 Apr; 33(2):120-6. PubMed ID: 26690548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined motor and somatosensory evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in 17 consecutive procedures.
    Hyun SJ; Rhim SC
    Br J Neurosurg; 2009 Aug; 23(4):393-400. PubMed ID: 19637010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is intraoperative neurophysiological monitoring valuable predicting postoperative neurological recovery?
    Rho YJ; Rhim SC; Kang JK
    Spinal Cord; 2016 Dec; 54(12):1121-1126. PubMed ID: 27163449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.