These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 31573109)

  • 1. The Hydrolysis of the Anhydride of 2-Cyano-2-phenylpropanoic Acid Triggers the Repeated Back and Forth Motions of an Acid-Base Operated Molecular Switch.
    Biagini C; Capocasa G; Cataldi V; Del Giudice D; Mandolini L; Di Stefano S
    Chemistry; 2019 Nov; 25(66):15205-15211. PubMed ID: 31573109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of the Decarboxylation of 2-Cyano-2-phenylpropanoic Acid to Large-Amplitude Motions: A Convenient Fuel for an Acid-Base-Operated Molecular Switch.
    Berrocal JA; Biagini C; Mandolini L; Di Stefano S
    Angew Chem Int Ed Engl; 2016 Jun; 55(24):6997-7001. PubMed ID: 27145060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the liberation rate of the in situ release of a chemical fuel for the operationally autonomous motions of molecular machines.
    Biagini C; Capocasa G; Del Giudice D; Cataldi V; Mandolini L; Di Stefano S
    Org Biomol Chem; 2020 May; 18(20):3867-3873. PubMed ID: 32373832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2-Cyano-2-phenylpropanoic Acid Triggers the Back and Forth Motions of an Acid-Base-Operated Paramagnetic Molecular Switch.
    Franchi P; Poderi C; Mezzina E; Biagini C; Di Stefano S; Lucarini M
    J Org Chem; 2019 Jul; 84(14):9364-9368. PubMed ID: 31203619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoinduced Release of a Chemical Fuel for Acid-Base-Operated Molecular Machines.
    Biagini C; Di Pietri F; Mandolini L; Lanzalunga O; Di Stefano S
    Chemistry; 2018 Jul; 24(40):10122-10127. PubMed ID: 29697159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variations in the fuel structure control the rate of the back and forth motions of a chemically fuelled molecular switch.
    Biagini C; Albano S; Caruso R; Mandolini L; Berrocal JA; Di Stefano S
    Chem Sci; 2018 Jan; 9(1):181-188. PubMed ID: 29629086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissipative Systems Driven by the Decarboxylation of Activated Carboxylic Acids.
    Del Giudice D; Di Stefano S
    Acc Chem Res; 2023 Apr; 56(7):889-899. PubMed ID: 36916734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Synthesis of Nonequilibrium Systems.
    Cheng C; McGonigal PR; Stoddart JF; Astumian RD
    ACS Nano; 2015 Sep; 9(9):8672-88. PubMed ID: 26222543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autonomous fuelled directional rotation about a covalent single bond.
    Borsley S; Kreidt E; Leigh DA; Roberts BMW
    Nature; 2022 Apr; 604(7904):80-85. PubMed ID: 35388198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotary and linear molecular motors driven by pulses of a chemical fuel.
    Erbas-Cakmak S; Fielden SDP; Karaca U; Leigh DA; McTernan CT; Tetlow DJ; Wilson MR
    Science; 2017 Oct; 358(6361):340-343. PubMed ID: 29051374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillating Emission of [2]Rotaxane Driven by Chemical Fuel.
    Ghosh A; Paul I; Adlung M; Wickleder C; Schmittel M
    Org Lett; 2018 Feb; 20(4):1046-1049. PubMed ID: 29384684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in the Synthesis and Functions of Reconfigurable Interlocked DNA Nanostructures.
    Lu CH; Cecconello A; Willner I
    J Am Chem Soc; 2016 Apr; 138(16):5172-85. PubMed ID: 27019201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abiotic Chemical Fuels for the Operation of Molecular Machines.
    Biagini C; Di Stefano S
    Angew Chem Int Ed Engl; 2020 May; 59(22):8344-8354. PubMed ID: 31898850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Holder Strategy for Efficient and Selective Synthesis of Lk 1 ssDNA Catenane.
    Li Q; Li J; Cui Y; Liu S; An R; Liang X; Komiyama M
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30189687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Autonomously Reciprocating Transmembrane Nanoactuator.
    Watson MA; Cockroft SL
    Angew Chem Int Ed Engl; 2016 Jan; 55(4):1345-9. PubMed ID: 26661295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of net unidirectional ring shuttling in a chemically fueled [2]catenane.
    Bazargan G; Sohlberg K
    J Mol Model; 2018 Sep; 24(10):291. PubMed ID: 30242486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of linear [5]catenanes via olefin metathesis dimerization of pseudorotaxanes composed of a [2]catenane and a secondary ammonium salt.
    Iwamoto H; Tafuku S; Sato Y; Takizawa W; Katagiri W; Tayama E; Hasegawa E; Fukazawa Y; Haino T
    Chem Commun (Camb); 2016 Jan; 52(2):319-22. PubMed ID: 26515104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Off-Equilibrium Speed Control of a Multistage Molecular Rotor: 2-Fold Chemical Fueling by Acid or Silver(I).
    Goswami A; Saha S; Elramadi E; Ghosh A; Schmittel M
    J Am Chem Soc; 2021 Sep; 143(36):14926-14935. PubMed ID: 34478277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stepwise Motion in a Multivalent [2](3)Catenane.
    Meng Z; Han Y; Wang LN; Xiang JF; He SG; Chen CF
    J Am Chem Soc; 2015 Aug; 137(30):9739-45. PubMed ID: 26186017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereoselectivity of DNA catenane fusion by resolvase.
    Stark WM; Parker CN; Halford SE; Boocock MR
    Nature; 1994 Mar; 368(6466):76-8. PubMed ID: 8107889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.