These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31573223)

  • 1. Experimental Realization of a Quantum Dot Energy Harvester.
    Jaliel G; Puddy RK; Sánchez R; Jordan AN; Sothmann B; Farrer I; Griffiths JP; Ritchie DA; Smith CG
    Phys Rev Lett; 2019 Sep; 123(11):117701. PubMed ID: 31573223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage.
    Kano S; Fujii M
    Nanotechnology; 2017 Mar; 28(9):095403. PubMed ID: 28082731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a scanning gate microscope for mesoscopic electron systems in a cryogen-free dilution refrigerator.
    Pelliccione M; Sciambi A; Bartel J; Keller AJ; Goldhaber-Gordon D
    Rev Sci Instrum; 2013 Mar; 84(3):033703. PubMed ID: 23556823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-terminal energy harvester with coupled quantum dots.
    Thierschmann H; Sánchez R; Sothmann B; Arnold F; Heyn C; Hansen W; Buhmann H; Molenkamp LW
    Nat Nanotechnol; 2015 Oct; 10(10):854-8. PubMed ID: 26280407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum dot thermometry at ultra-low temperature in a dilution refrigerator with a
    Nicolí G; Märki P; Bräm BA; Röösli MP; Hennel S; Hofmann A; Reichl C; Wegscheider W; Ihn T; Ensslin K
    Rev Sci Instrum; 2019 Nov; 90(11):113901. PubMed ID: 31779415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical Bounds on Electron Energy Filtering in Disordered Nanomaterials.
    Dodin A; Aull B; Kunz RR; Willard AP
    Nano Lett; 2019 Dec; 19(12):8441-8446. PubMed ID: 31670966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hot-electron transfer in quantum-dot heterojunction films.
    Grimaldi G; Crisp RW; Ten Brinck S; Zapata F; van Ouwendorp M; Renaud N; Kirkwood N; Evers WH; Kinge S; Infante I; Siebbeles LDA; Houtepen AJ
    Nat Commun; 2018 Jun; 9(1):2310. PubMed ID: 29899361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the Degeneracy of Discrete Energy Levels Using a GaAs/AlGaAs Quantum Dot.
    Hofmann A; Maisi VF; Gold C; Krähenmann T; Rössler C; Basset J; Märki P; Reichl C; Wegscheider W; Ensslin K; Ihn T
    Phys Rev Lett; 2016 Nov; 117(20):206803. PubMed ID: 27886466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of transport suppression in an undoped AlGaAs/GaAs quantum dot single-electron transistor.
    See AM; Klochan O; Micolich AP; Aagesen M; Lindelof PE; Hamilton AR
    J Phys Condens Matter; 2013 Dec; 25(50):505302. PubMed ID: 24275246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct observation of polarons in electron populated quantum dots by resonant Raman scattering.
    Aslan B; Liu HC; Korkusinski M; Hawrylak P; Lockwood DJ
    J Nanosci Nanotechnol; 2008 Feb; 8(2):789-94. PubMed ID: 18464407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopy of NbSe
    Devidas TR; Keren I; Steinberg H
    Nano Lett; 2021 Aug; 21(16):6931-6937. PubMed ID: 34351777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and Readout of Multielectron High-Spin States in a Gate-Defined GaAs/AlGaAs Quantum Dot.
    Kiyama H; Yoshimi K; Kato T; Nakajima T; Oiwa A; Tarucha S
    Phys Rev Lett; 2021 Aug; 127(8):086802. PubMed ID: 34477427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.
    Nguyen D; Nguyen HA; Lyding JW; Gruebele M
    ACS Nano; 2017 Jun; 11(6):6328-6335. PubMed ID: 28525955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-electron charge sensing in self-assembled quantum dots.
    Kiyama H; Korsch A; Nagai N; Kanai Y; Matsumoto K; Hirakawa K; Oiwa A
    Sci Rep; 2018 Sep; 8(1):13188. PubMed ID: 30228339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonplasmonic Hot-Electron Photocurrents from Mn-Doped Quantum Dots in Photoelectrochemical Cells.
    Dong Y; Rossi D; Parobek D; Son DH
    Chemphyschem; 2016 Mar; 17(5):660-4. PubMed ID: 26807659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Tunneling Dielectric Layer Free Floating Gate Nonvolatile Memory Employing Type-I Core-Shell Quantum Dots as Discrete Charge-Trapping/Tunneling Centers.
    Yan C; Wen J; Lin P; Sun Z
    Small; 2019 Jan; 15(1):e1804156. PubMed ID: 30480357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alloy Fluctuations Act as Quantum Dot-like Emitters in GaAs-AlGaAs Core-Shell Nanowires.
    Jeon N; Loitsch B; Morkoetter S; Abstreiter G; Finley J; Krenner HJ; Koblmueller G; Lauhon LJ
    ACS Nano; 2015 Aug; 9(8):8335-43. PubMed ID: 26225539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AlGaAs quantum dots.
    Chekhovich EA; Ulhaq A; Zallo E; Ding F; Schmidt OG; Skolnick MS
    Nat Mater; 2017 Oct; 16(10):982-986. PubMed ID: 28783160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertically stacked quantum dot pairs fabricated by nanohole filling.
    Sonnenberg D; Küster A; Graf A; Heyn Ch; Hansen W
    Nanotechnology; 2014 May; 25(21):215602. PubMed ID: 24784358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.