These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31573253)

  • 1. Interference-Induced Quantum Squeezing Enhancement in a Two-beam Phase-Sensitive Amplifier.
    Liu S; Lou Y; Jing J
    Phys Rev Lett; 2019 Sep; 123(11):113602. PubMed ID: 31573253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of quantum squeezing generated from the phase-sensitive and phase-insensitive amplifiers in the ultra-low average input photon number regime.
    He H; Liu S; Lou Y; Jing J
    Opt Express; 2020 Nov; 28(24):36487-36496. PubMed ID: 33379741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental observation of quantum correlations in four-wave mixing with a conical pump.
    Cao L; Du J; Feng J; Qin Z; Marino AM; Kolobov MI; Jing J
    Opt Lett; 2017 Apr; 42(7):1201-1204. PubMed ID: 28362729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental characterization of multiple quantum correlated beams in two-beam pumped cascaded four-wave mixing process.
    Liu S; Lou Y; Jing J
    Opt Express; 2019 Dec; 27(26):37999-38005. PubMed ID: 31878571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase manipulated two-mode entangled state from a phase-sensitive amplifier.
    Liu S; Lou Y; Jing J
    Opt Express; 2021 Nov; 29(24):38971-38978. PubMed ID: 34809269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of frequency degenerate twin beams in Rb85 vapor.
    Jia J; Du W; Chen JF; Yuan CH; Ou ZY; Zhang W
    Opt Lett; 2017 Oct; 42(19):4024-4027. PubMed ID: 28957188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved measurement of two-mode quantum correlations using a phase-sensitive amplifier.
    Li T; Anderson BE; Horrom T; Schmittberger BL; Jones KM; Lett PD
    Opt Express; 2017 Sep; 25(18):21301-21311. PubMed ID: 29041429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beam Focusing and Reduction of Quantum Uncertainty in Width at the Few-Photon Level via Multi-Spatial-Mode Squeezing.
    Zhang L; Agarwal GS; Scully MO
    Phys Rev Lett; 2019 Mar; 122(8):083601. PubMed ID: 30932561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compact sub-kilohertz low-frequency quantum light source based on four-wave mixing in cesium vapor.
    Ma R; Liu W; Qin Z; Su X; Jia X; Zhang J; Gao J
    Opt Lett; 2018 Mar; 43(6):1243-1246. PubMed ID: 29543262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor.
    Liu C; Jing J; Zhou Z; Pooser RC; Hudelist F; Zhou L; Zhang W
    Opt Lett; 2011 Aug; 36(15):2979-81. PubMed ID: 21808378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal bright multimode quantum squeezing via multi-seeding energy-level cascaded four-wave mixing.
    Li J; Zeng J; Li F; Zhang Y; Cai Y
    Opt Express; 2022 Oct; 30(22):39762-39774. PubMed ID: 36298921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-fidelity heralded quantum squeezing gate based on entanglement.
    Liu K; Li J; Yang R; Zhai S
    Opt Express; 2020 Aug; 28(16):23628-23639. PubMed ID: 32752356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of entanglement using cascaded four-wave mixing processes.
    Xin J; Qi J; Jing J
    Opt Lett; 2017 Jan; 42(2):366-369. PubMed ID: 28081114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Interferometer Combining Squeezing and Parametric Amplification.
    Zuo X; Yan Z; Feng Y; Ma J; Jia X; Xie C; Peng K
    Phys Rev Lett; 2020 May; 124(17):173602. PubMed ID: 32412253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental generation of multiple quantum correlated beams from hot rubidium vapor.
    Qin Z; Cao L; Wang H; Marino AM; Zhang W; Jing J
    Phys Rev Lett; 2014 Jul; 113(2):023602. PubMed ID: 25062179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimum quantum resource distribution for phase measurement and quantum information tapping in a dual-beam SU(1,1) interferometer.
    Liu Y; Huo N; Li J; Cui L; Li X; Ou ZJ
    Opt Express; 2019 Apr; 27(8):11292-11302. PubMed ID: 31052975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplitude squeezing of light by means of a phase-sensitive fiber parametric amplifier.
    Levandovsky D; Vasilyev M; Kumar P
    Opt Lett; 1999 Jul; 24(14):984-6. PubMed ID: 18073917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum-enhanced optical-phase tracking.
    Yonezawa H; Nakane D; Wheatley TA; Iwasawa K; Takeda S; Arao H; Ohki K; Tsumura K; Berry DW; Ralph TC; Wiseman HM; Huntington EH; Furusawa A
    Science; 2012 Sep; 337(6101):1514-7. PubMed ID: 22997332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency non-degenerate phase-sensitive optical parametric amplification based on four-wave-mixing in width-modulated silicon waveguides.
    Wang Z; Liu H; Sun Q; Huang N; Li X
    Opt Express; 2014 Dec; 22(25):31486-95. PubMed ID: 25607099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor.
    Qin Z; Jing J; Zhou J; Liu C; Pooser RC; Zhou Z; Zhang W
    Opt Lett; 2012 Aug; 37(15):3141-3. PubMed ID: 22859112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.