These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31573274)

  • 1. Few-Mode Geometric Description of a Driven-Dissipative Phase Transition in an Open Quantum System.
    Krimer DO; Pletyukhov M
    Phys Rev Lett; 2019 Sep; 123(11):110604. PubMed ID: 31573274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum information-geometry of dissipative quantum phase transitions.
    Banchi L; Giorda P; Zanardi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022102. PubMed ID: 25353417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical phase transitions and instabilities in open atomic many-body systems.
    Diehl S; Tomadin A; Micheli A; Fazio R; Zoller P
    Phys Rev Lett; 2010 Jul; 105(1):015702. PubMed ID: 20867464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometric Phase of a Transmon in a Dissipative Quantum Circuit.
    Viotti L; Lombardo FC; Villar PI
    Entropy (Basel); 2024 Jan; 26(1):. PubMed ID: 38275497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum-to-classical crossover near quantum critical point.
    Vasin M; Ryzhov V; Vinokur VM
    Sci Rep; 2015 Dec; 5():18600. PubMed ID: 26688102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact Solutions of Interacting Dissipative Systems via Weak Symmetries.
    McDonald A; Clerk AA
    Phys Rev Lett; 2022 Jan; 128(3):033602. PubMed ID: 35119876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum behavior of the Duffing oscillator at the dissipative phase transition.
    Chen QM; Fischer M; Nojiri Y; Renger M; Xie E; Partanen M; Pogorzalek S; Fedorov KG; Marx A; Deppe F; Gross R
    Nat Commun; 2023 May; 14(1):2896. PubMed ID: 37210421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact Solution of the Infinite-Range Dissipative Transverse-Field Ising Model.
    Roberts D; Clerk AA
    Phys Rev Lett; 2023 Nov; 131(19):190403. PubMed ID: 38000440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solving the Liouvillian Gap with Artificial Neural Networks.
    Yuan D; Wang HR; Wang Z; Deng DL
    Phys Rev Lett; 2021 Apr; 126(16):160401. PubMed ID: 33961454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parametrically driving a quantum oscillator into exceptionality.
    Downing CA; Vidiella-Barranco A
    Sci Rep; 2023 Jul; 13(1):11004. PubMed ID: 37419917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bistability and chaos at low levels of quanta.
    Gevorgyan TV; Shahinyan AR; Chew LY; Kryuchkyan GY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022910. PubMed ID: 24032904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase shielding soliton in parametrically driven systems.
    Clerc MG; Garcia-Ñustes MA; Zárate Y; Coulibaly S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052915. PubMed ID: 23767606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Transducer Using a Parametric Driven-Dissipative Phase Transition.
    Heugel TL; Biondi M; Zilberberg O; Chitra R
    Phys Rev Lett; 2019 Oct; 123(17):173601. PubMed ID: 31702226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Associative Memory with a Single Driven-Dissipative Nonlinear Oscillator.
    Labay-Mora A; Zambrini R; Giorgi GL
    Phys Rev Lett; 2023 May; 130(19):190602. PubMed ID: 37243658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometric phases and quantum phase transitions in open systems.
    Nesterov AI; Ovchinnikov SG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):015202. PubMed ID: 18764008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear dynamics of classical spin as Möbius transformation.
    Galda A; Vinokur VМ
    Sci Rep; 2017 Apr; 7(1):1168. PubMed ID: 28446768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Density Quantum Sensing with Dissipative First Order Transitions.
    Raghunandan M; Wrachtrup J; Weimer H
    Phys Rev Lett; 2018 Apr; 120(15):150501. PubMed ID: 29756853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Driven-Dissipative Time Crystalline Phases in a Two-Mode Bosonic System with Kerr Nonlinearity.
    Bakker LR; Bahovadinov MS; Kurlov DV; Gritsev V; Fedorov AK; Krimer DO
    Phys Rev Lett; 2022 Dec; 129(25):250401. PubMed ID: 36608248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kerr frequency combs and triangular spectra.
    Liu Z; Coulibaly S; Taki M; Akhmediev N
    Opt Lett; 2017 Jun; 42(11):2126-2129. PubMed ID: 28569862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical critical phenomena in driven-dissipative systems.
    Sieberer LM; Huber SD; Altman E; Diehl S
    Phys Rev Lett; 2013 May; 110(19):195301. PubMed ID: 23705715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.