These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 31573323)

  • 1. Identification of Drug Targets in Breast Cancer Metabolic Network.
    Kanhaiya K; Tyagi-Tiwari D
    J Comput Biol; 2020 Jun; 27(6):975-986. PubMed ID: 31573323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification.
    Guo WF; Zhang SW; Shi QQ; Zhang CM; Zeng T; Chen L
    BMC Genomics; 2018 Jan; 19(Suppl 1):924. PubMed ID: 29363426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Network Reconstructions to Predict Drug Targets and Off-Target Effects.
    Rawls K; Dougherty BV; Papin J
    Methods Mol Biol; 2020; 2088():315-330. PubMed ID: 31893380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of cancer gene co-expression network and metabolic network to uncover potential cancer drug targets.
    Chen J; Ma M; Shen N; Xi JJ; Tian W
    J Proteome Res; 2013 Jun; 12(6):2354-64. PubMed ID: 23590569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inside the biochemical pathways of thymidylate synthase perturbed by anticancer drugs: Novel strategies to overcome cancer chemoresistance.
    Taddia L; D'Arca D; Ferrari S; Marraccini C; Severi L; Ponterini G; Assaraf YG; Marverti G; Costi MP
    Drug Resist Updat; 2015 Nov; 23():20-54. PubMed ID: 26690339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllability in cancer metabolic networks according to drug targets as driver nodes.
    Asgari Y; Salehzadeh-Yazdi A; Schreiber F; Masoudi-Nejad A
    PLoS One; 2013; 8(11):e79397. PubMed ID: 24282504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting drug targets with minimum side effects in metabolic networks.
    Li Z; Wang RS; Zhang XS; Chen L
    IET Syst Biol; 2009 Nov; 3(6):523-33. PubMed ID: 19947778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical Identification of Dysregulated Circulating microRNAs and Their Implication in Drug Response in Triple Negative Breast Cancer (TNBC) by Target Gene Network and Meta-Analysis.
    Qattan A; Al-Tweigeri T; Alkhayal W; Suleman K; Tulbah A; Amer S
    Genes (Basel); 2021 Apr; 12(4):. PubMed ID: 33918859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines.
    Vethakanraj HS; Babu TA; Sudarsanan GB; Duraisamy PK; Ashok Kumar S
    Biochem Biophys Res Commun; 2015 Aug; 464(3):833-9. PubMed ID: 26188095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the pharmacological mechanism of Yanghe Decoction on HER2-positive breast cancer by a network pharmacology approach.
    Zeng L; Yang K
    J Ethnopharmacol; 2017 Mar; 199():68-85. PubMed ID: 28130113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioselective Effects of Metalaxyl Enantiomers on Breast Cancer Cells Metabolic Profiling Using HPLC-QTOF-Based Metabolomics.
    Zhang P; Zhu W; Wang D; Yan J; Wang Y; He L
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28085117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of miRNA-miRNA networks revealing the complexity of miRNA-mediated mechanisms in trastuzumab treated breast cancer cell lines.
    Cilek EE; Ozturk H; Gur Dedeoglu B
    PLoS One; 2017; 12(10):e0185558. PubMed ID: 28981542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying Cancer Subtypes from miRNA-TF-mRNA Regulatory Networks and Expression Data.
    Xu T; Le TD; Liu L; Wang R; Sun B; Li J
    PLoS One; 2016; 11(4):e0152792. PubMed ID: 27035433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Personalized Chemoresistance Genes in Subtypes of Basal-Like Breast Cancer Based on Functional Differences Using Pathway Analysis.
    Wu T; Wang X; Li J; Song X; Wang Y; Wang Y; Zhang L; Li Z; Tian J
    PLoS One; 2015; 10(6):e0131183. PubMed ID: 26126114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic genome and transcriptional network-based biomarkers and drugs: precision in breast cancer therapy.
    Kyrochristos ID; Ziogas DE; Roukos DH
    Med Res Rev; 2019 May; 39(3):1205-1227. PubMed ID: 30417574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting disease phenotypes based on the molecular networks with condition-responsive correlation.
    Lee S; Lee E; Lee KH; Lee D
    Int J Data Min Bioinform; 2011; 5(2):131-42. PubMed ID: 21544951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actionable pathways: interactive discovery of therapeutic targets using signaling pathway models.
    Salavert F; Hidago MR; Amadoz A; Çubuk C; Medina I; Crespo D; Carbonell-Caballero J; Dopazo J
    Nucleic Acids Res; 2016 Jul; 44(W1):W212-6. PubMed ID: 27137885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network, nodes and nexus: systems approach to multitarget therapeutics.
    Murthy D; Attri KS; Gokhale RS
    Curr Opin Biotechnol; 2013 Dec; 24(6):1129-36. PubMed ID: 23453398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of a network-based strategy for the optimization of combinatorial target selection in breast cancer therapy: siRNA knockdown of network targets in MDA-MB-231 cells as an in vitro model for inhibition of tumor development.
    Tilli TM; Carels N; Tuszynski JA; Pasdar M
    Oncotarget; 2016 Sep; 7(39):63189-63203. PubMed ID: 27527857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twiner: correlation-based regularization for identifying common cancer gene signatures.
    Lopes MB; Casimiro S; Vinga S
    BMC Bioinformatics; 2019 Jun; 20(1):356. PubMed ID: 31238876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.