BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 31573509)

  • 21. Structural model of dodecameric heat-shock protein Hsp21: Flexible N-terminal arms interact with client proteins while C-terminal tails maintain the dodecamer and chaperone activity.
    Rutsdottir G; Härmark J; Weide Y; Hebert H; Rasmussen MI; Wernersson S; Respondek M; Akke M; Højrup P; Koeck PJB; Söderberg CAG; Emanuelsson C
    J Biol Chem; 2017 May; 292(19):8103-8121. PubMed ID: 28325834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution and functional diversification of the small heat shock protein/α-crystallin family in higher plants.
    Bondino HG; Valle EM; Ten Have A
    Planta; 2012 Jun; 235(6):1299-313. PubMed ID: 22210597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuropathy-causing mutations in HSPB1 impair autophagy by disturbing the formation of SQSTM1/p62 bodies.
    Haidar M; Asselbergh B; Adriaenssens E; De Winter V; Timmermans JP; Auer-Grumbach M; Juneja M; Timmerman V
    Autophagy; 2019 Jun; 15(6):1051-1068. PubMed ID: 30669930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conditional Disorder in Small Heat-shock Proteins.
    Alderson TR; Ying J; Bax A; Benesch JLP; Baldwin AJ
    J Mol Biol; 2020 Apr; 432(9):3033-3049. PubMed ID: 32081587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity.
    Basha E; Friedrich KL; Vierling E
    J Biol Chem; 2006 Dec; 281(52):39943-52. PubMed ID: 17090542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regions outside the alpha-crystallin domain of the small heat shock protein Hsp26 are required for its dimerization.
    Chen J; Feige MJ; Franzmann TM; Bepperling A; Buchner J
    J Mol Biol; 2010 Apr; 398(1):122-31. PubMed ID: 20171228
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of small heat-shock proteins by hetero-oligomer formation.
    Mymrikov EV; Riedl M; Peters C; Weinkauf S; Haslbeck M; Buchner J
    J Biol Chem; 2020 Jan; 295(1):158-169. PubMed ID: 31767683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HspB5 Chaperone Structure and Activity Are Modulated by Chemical-Scale Interactions in the ACD Dimer Interface.
    Wang C; Teng L; Liu ZS; Kamalova A; McMenimen KA
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Utilization of fluorescent chimeras for investigation of heterooligomeric complexes formed by human small heat shock proteins.
    Datskevich PN; Mymrikov EV; Gusev NB
    Biochimie; 2012 Aug; 94(8):1794-804. PubMed ID: 22531625
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The N terminus of the small heat shock protein HSPB7 drives its polyQ aggregation-suppressing activity.
    Wu D; Vonk JJ; Salles F; Vonk D; Haslbeck M; Melki R; Bergink S; Kampinga HH
    J Biol Chem; 2019 Jun; 294(25):9985-9994. PubMed ID: 31097540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple nanocages of a cyanophage small heat shock protein with icosahedral and octahedral symmetries.
    Biswas S; Garg P; Dutta S; Suguna K
    Sci Rep; 2021 Oct; 11(1):21023. PubMed ID: 34697325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel small heat shock protein of Haliotis discus hannai: characterization, structure modeling, and expression profiles under environmental stresses.
    Sun BG; Hu YH
    Cell Stress Chaperones; 2016 Jul; 21(4):583-91. PubMed ID: 27084408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular structure and dynamics of the dimeric human small heat shock protein HSPB6.
    Weeks SD; Baranova EV; Heirbaut M; Beelen S; Shkumatov AV; Gusev NB; Strelkov SV
    J Struct Biol; 2014 Mar; 185(3):342-54. PubMed ID: 24382496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Small heat shock proteins in neurodegenerative diseases.
    Vendredy L; Adriaenssens E; Timmerman V
    Cell Stress Chaperones; 2020 Jul; 25(4):679-699. PubMed ID: 32323160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quaternary dynamics and plasticity underlie small heat shock protein chaperone function.
    Stengel F; Baldwin AJ; Painter AJ; Jaya N; Basha E; Kay LE; Vierling E; Robinson CV; Benesch JL
    Proc Natl Acad Sci U S A; 2010 Feb; 107(5):2007-12. PubMed ID: 20133845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. α-Crystallin Domains of Five Human Small Heat Shock Proteins (sHsps) Differ in Dimer Stabilities and Ability to Incorporate Themselves into Oligomers of Full-Length sHsps.
    Shatov VM; Muranova LK; Zamotina MA; Sluchanko NN; Gusev NB
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674601
    [TBL] [Abstract][Full Text] [Related]  

  • 37. It takes a dimer to tango: Oligomeric small heat shock proteins dissociate to capture substrate.
    Santhanagopalan I; Degiacomi MT; Shepherd DA; Hochberg GKA; Benesch JLP; Vierling E
    J Biol Chem; 2018 Dec; 293(51):19511-19521. PubMed ID: 30348902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and functional specificity of small heat shock protein HspB1 and HspB4, two cellular partners of HspB5: role of the in vitro hetero-complex formation in chaperone activity.
    Skouri-Panet F; Michiel M; Férard C; Duprat E; Finet S
    Biochimie; 2012 Apr; 94(4):975-84. PubMed ID: 22210387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pH-dependent structural modulation is conserved in the human small heat shock protein HSBP1.
    Clouser AF; Klevit RE
    Cell Stress Chaperones; 2017 Jul; 22(4):569-575. PubMed ID: 28332148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alternative bacterial two-component small heat shock protein systems.
    Bepperling A; Alte F; Kriehuber T; Braun N; Weinkauf S; Groll M; Haslbeck M; Buchner J
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20407-12. PubMed ID: 23184973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.