These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 3157370)

  • 1. Ca2+ transport and Ca2+-dependent ATP hydrolysis by Golgi vesicles from lactating rat mammary glands.
    Virk SS; Kirk CJ; Shears SB
    Biochem J; 1985 Mar; 226(3):741-8. PubMed ID: 3157370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-dependent calcium sequestration activity in a Golgi apparatus fraction derived from lactating rat mammary glands.
    West DW
    Biochim Biophys Acta; 1981 Apr; 673(4):374-86. PubMed ID: 7225423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of Ca2+ transport in plasma membrane vesicles prepared from cultured pituitary cells. II. (Ca2+ + Mg2+)-ATPase-dependent Ca2+ transport activity.
    Barros F; Kaczorowski GJ
    J Biol Chem; 1984 Aug; 259(15):9404-10. PubMed ID: 6146614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-dependent calcium transport and its correlation with Ca2+ -ATPase activity in basolateral plasma membranes of rat duodenum.
    Ghijsen WE; De Jong MD; Van Os CH
    Biochim Biophys Acta; 1982 Jul; 689(2):327-36. PubMed ID: 6214277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-dependent calcium transport by a Golgi-enriched membrane fraction from mouse mammary gland.
    Neville MC; Selker F; Semple K; Watters C
    J Membr Biol; 1981; 61(2):97-105. PubMed ID: 6268790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Ca2+-stimulated adenosine triphosphatase in Golgi-enriched membranes of lactating murine mammary tissue.
    Watters CD
    Biochem J; 1984 Nov; 224(1):39-45. PubMed ID: 6239617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+-stimulated, Mg2+-dependent ATPase activity in neutrophil plasma membrane vesicles. Coupling to Ca2+ transport.
    Ochs DL; Reed PW
    J Biol Chem; 1984 Jan; 259(1):102-6. PubMed ID: 6142882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic properties of the ATP-dependent Ca2+ pump and the Na+/Ca2+ exchange system in basolateral membranes from rat kidney cortex.
    van Heeswijk MP; Geertsen JA; van Os CH
    J Membr Biol; 1984; 79(1):19-31. PubMed ID: 6737462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+-stimulated, Mg2+-independent ATP hydrolysis and the high affinity Ca2+-pumping ATPase. Two different activities in rat kidney basolateral membranes.
    Ghijsen W; Gmaj P; Murer H
    Biochim Biophys Acta; 1984 Dec; 778(3):481-8. PubMed ID: 6239653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of phosphorylation in the lumen of the Golgi apparatus. Translocation of adenosine 5'-triphosphate into Golgi vesicles from rat liver and mammary gland.
    Capasso JM; Keenan TW; Abeijon C; Hirschberg CB
    J Biol Chem; 1989 Mar; 264(9):5233-40. PubMed ID: 2925690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitamin D-regulated, ATP-dependent calcium transport by intestinal Golgi vesicles during maturation in the rat.
    Arab N; Ghishan F
    Pediatr Res; 1989 Jul; 26(1):58-62. PubMed ID: 2771509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-dependence of Ca2+ uptake and ATP hydrolysis of reconstituted Ca2+-ATPase vesicles.
    Navarro J; Essig A
    Biophys J; 1984 Dec; 46(6):709-17. PubMed ID: 6240285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient formation of the phosphoprotein during autophosphorylation of rat mammary gland Golgi vesicles.
    West DW; Clegg RA
    Biochim Biophys Acta; 1982 Sep; 690(2):290-5. PubMed ID: 7126578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium transport and Ca2+-ATPase activity in ram spermatozoa plasma membrane vesicles.
    Breitbart H; Stern B; Rubinstein S
    Biochim Biophys Acta; 1983 Mar; 728(3):349-55. PubMed ID: 6297578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP-dependent calcium transport in rat parotid basolateral membrane vesicles is modulated by membrane potential.
    Ambudkar IS; Baum BJ
    J Membr Biol; 1988 Apr; 102(1):59-69. PubMed ID: 2969416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic characterization of calcium uptake by the rat liver Golgi apparatus.
    Rojas P; Surroca A; Orellana A; Wolff D
    Cell Biol Int; 2000; 24(4):229-33. PubMed ID: 10816324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Casein kinase activity in rat mammary gland Golgi vesicles. Demonstration of latency and requirement for a transmembrane ATP carrier.
    West DW; Clegg RA
    Biochem J; 1984 Apr; 219(1):181-7. PubMed ID: 6586179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-dependent calcium transport in plasma membrane vesicles from neutrophil leukocytes.
    Ochs DL; Reed PW
    J Biol Chem; 1983 Aug; 258(16):10116-22. PubMed ID: 6309768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of calcium transport by basolateral membrane vesicles of human small intestine.
    Kikuchi K; Kikuchi T; Ghishan FK
    Am J Physiol; 1988 Oct; 255(4 Pt 1):G482-9. PubMed ID: 3140674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Casein kinase activity in rat mammary gland Golgi vesicles. Phosphorylation of endogenous caseins.
    West DW; Clegg RA
    Eur J Biochem; 1983 Dec; 137(1-2):215-20. PubMed ID: 6581043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.