These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31573772)

  • 1. Dielectric-Screening Reduction-Induced Large Transport Gap in Suspended Sub-10 nm Graphene Nanoribbon Functional Devices.
    Schmidt ME; Muruganathan M; Kanzaki T; Iwasaki T; Hammam AMM; Suzuki S; Ogawa S; Mizuta H
    Small; 2019 Nov; 15(46):e1903025. PubMed ID: 31573772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structurally Controlled Large-Area 10 nm Pitch Graphene Nanomesh by Focused Helium Ion Beam Milling.
    Schmidt ME; Iwasaki T; Muruganathan M; Haque M; Van Ngoc H; Ogawa S; Mizuta H
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10362-10368. PubMed ID: 29485851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography.
    Abbas AN; Liu G; Liu B; Zhang L; Liu H; Ohlberg D; Wu W; Zhou C
    ACS Nano; 2014 Feb; 8(2):1538-46. PubMed ID: 24467172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and In Situ Transmission Electron Microscope Characterization of Free-Standing Graphene Nanoribbon Devices.
    Wang Q; Kitaura R; Suzuki S; Miyauchi Y; Matsuda K; Yamamoto Y; Arai S; Shinohara H
    ACS Nano; 2016 Jan; 10(1):1475-80. PubMed ID: 26731015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlating atomic structure and transport in suspended graphene nanoribbons.
    Qi ZJ; Rodríguez-Manzo JA; Botello-Méndez AR; Hong SJ; Stach EA; Park YW; Charlier JC; Drndić M; Johnson AT
    Nano Lett; 2014 Aug; 14(8):4238-44. PubMed ID: 24954396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasiparticle energies and band gaps in graphene nanoribbons.
    Yang L; Park CH; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemically derived, ultrasmooth graphene nanoribbon semiconductors.
    Li X; Wang X; Zhang L; Lee S; Dai H
    Science; 2008 Feb; 319(5867):1229-32. PubMed ID: 18218865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled Preparation and Device Application of Sub-5 nm Graphene Nanoribbons and Graphene Nanoribbon/Carbon Nanotube Intramolecular Heterostructures.
    He Z; Wang K; Yan C; Wan L; Zhou Q; Zhang T; Ye X; Zhang Y; Shi F; Jiang S; Zhao J; Wang K; Chen C
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):7148-7156. PubMed ID: 36692227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene Nanoribbon Grids of Sub-10 nm Widths with High Electrical Connectivity.
    Kim N; Choi S; Yang SJ; Park J; Park JH; Nguyen NN; Park K; Ryu S; Cho K; Kim CJ
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):28593-28599. PubMed ID: 34101416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene nanoribbon devices at high bias.
    Han MY; Kim P
    Nano Converg; 2014; 1(1):1. PubMed ID: 28191387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ribbon width on electrical transport properties of graphene nanoribbons.
    Bang K; Chee SS; Kim K; Son M; Jang H; Lee BH; Baik KH; Myoung JM; Ham MH
    Nano Converg; 2018; 5(1):7. PubMed ID: 29577013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-situ electrical conductance measurement of suspended ultra-narrow graphene nanoribbons observed via transmission electron microscopy.
    Liu C; Zhang J; Zhang X; Muruganathan M; Mizuta H; Oshima Y
    Nanotechnology; 2021 Jan; 32(2):025710. PubMed ID: 32992312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Stable Persistent Photoconductivity with Suspended Graphene Nanoribbons.
    Suzuki H; Ogura N; Kaneko T; Kato T
    Sci Rep; 2018 Aug; 8(1):11819. PubMed ID: 30087393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-beam induced nano-etching of suspended graphene.
    Sommer B; Sonntag J; Ganczarczyk A; Braam D; Prinz G; Lorke A; Geller M
    Sci Rep; 2015 Jan; 5():7781. PubMed ID: 25586495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductance Tunable Suspended Graphene Nanomesh by Helium Ion Beam Milling.
    Liu F; Wang Z; Nakanao S; Ogawa S; Morita Y; Schmidt M; Haque M; Muruganathan M; Mizuta H
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32272618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallization-Induced Quantum Limits of Contact Resistance in Graphene Nanoribbons with One-Dimensional Contacts.
    Poljak M; Matić M
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helium ion beam milling to create a nano-structured domain wall magnetoresistance spin valve.
    Wang Y; Boden SA; Bagnall DM; Rutt HN; de Groot CH
    Nanotechnology; 2012 Oct; 23(39):395302. PubMed ID: 22972003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic transport of recrystallized freestanding graphene nanoribbons.
    Qi ZJ; Daniels C; Hong SJ; Park YW; Meunier V; Drndić M; Johnson AT
    ACS Nano; 2015; 9(4):3510-20. PubMed ID: 25738404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure changes during the surface-assisted formation of a graphene nanoribbon.
    Bronner C; Utecht M; Haase A; Saalfrank P; Klamroth T; Tegeder P
    J Chem Phys; 2014 Jan; 140(2):024701. PubMed ID: 24437896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.