BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31574084)

  • 1. Skeletal development in the sea urchin relies upon protein families that contain intrinsic disorder, aggregation-prone, and conserved globular interactive domains.
    Pendola M; Jain G; Evans JS
    PLoS One; 2019; 14(10):e0222068. PubMed ID: 31574084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycosylation Fosters Interactions between Model Sea Urchin Spicule Matrix Proteins. Implications for Embryonic Spiculogenesis and Biomineralization.
    Jain G; Pendola M; Koutsoumpeli E; Johnson S; Evans JS
    Biochemistry; 2018 May; 57(21):3032-3035. PubMed ID: 29757633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Model Sea Urchin Spicule Matrix Protein, rSpSM50, Is a Hydrogelator That Modifies and Organizes the Mineralization Process.
    Jain G; Pendola M; Huang YC; Gebauer D; Evans JS
    Biochemistry; 2017 May; 56(21):2663-2675. PubMed ID: 28478667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Model Sea Urchin Spicule Matrix Protein Self-Associates To Form Mineral-Modifying Protein Hydrogels.
    Jain G; Pendola M; Rao A; Cölfen H; Evans JS
    Biochemistry; 2016 Aug; 55(31):4410-21. PubMed ID: 27426695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secrets of the Sea Urchin Spicule Revealed: Protein Cooperativity Is Responsible for ACC Transformation, Intracrystalline Incorporation, and Guided Mineral Particle Assembly in Biocomposite Material Formation.
    Pendola M; Jain G; Huang YC; Gebauer D; Evans JS
    ACS Omega; 2018 Sep; 3(9):11823-11830. PubMed ID: 30320276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization.
    Rao A; Seto J; Berg JK; Kreft SG; Scheffner M; Cölfen H
    J Struct Biol; 2013 Aug; 183(2):205-15. PubMed ID: 23796503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a cDNA encoding a protein involved in formation of the skeleton during development of the sea urchin Lytechinus pictus.
    Livingston BT; Shaw R; Bailey A; Wilt F
    Dev Biol; 1991 Dec; 148(2):473-80. PubMed ID: 1743395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamics of secretion during sea urchin embryonic skeleton formation.
    Wilt FH; Killian CE; Hamilton P; Croker L
    Exp Cell Res; 2008 May; 314(8):1744-52. PubMed ID: 18355808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of spicule matrix proteins in the sea urchin embryo during normal and experimentally altered spiculogenesis.
    Urry LA; Hamilton PC; Killian CE; Wilt FH
    Dev Biol; 2000 Sep; 225(1):201-13. PubMed ID: 10964475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression.
    Benson S; Sucov H; Stephens L; Davidson E; Wilt F
    Dev Biol; 1987 Apr; 120(2):499-506. PubMed ID: 3556766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model peptide studies of sequence repeats derived from the intracrystalline biomineralization protein, SM50. II. Pro,Asn-rich tandem repeats.
    Zhang B; Xu G; Evans JS
    Biopolymers; 2000 Nov; 54(6):464-75. PubMed ID: 10951331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitors of procollagen C-terminal proteinase block gastrulation and spicule elongation in the sea urchin embryo.
    Huggins LG; Lennarz WJ
    Dev Growth Differ; 2001 Aug; 43(4):415-24. PubMed ID: 11473548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus.
    Kitajima T; Tomita M; Killian CE; Akasaka K; Wilt FH
    Dev Growth Differ; 1996 Dec; 38(6):687-95. PubMed ID: 11541911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The corrected structure of the SM50 spicule matrix protein of Strongylocentrotus purpuratus.
    Katoh-Fukui Y; Noce T; Ueda T; Fujiwara Y; Hashimoto N; Higashinakagawa T; Killian CE; Livingston BT; Wilt FH; Benson SC
    Dev Biol; 1991 May; 145(1):201-2. PubMed ID: 2019323
    [No Abstract]   [Full Text] [Related]  

  • 15. Aragonite-associated biomineralization proteins are disordered and contain interactive motifs.
    Evans JS
    Bioinformatics; 2012 Dec; 28(24):3182-5. PubMed ID: 23060620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary analysis of the cis-regulatory region of the spicule matrix gene SM50 in strongylocentrotid sea urchins.
    Walters J; Binkley E; Haygood R; Romano LA
    Dev Biol; 2008 Mar; 315(2):567-78. PubMed ID: 18262514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. II. Structure of the gene and derived sequence of the protein.
    Sucov HM; Benson S; Robinson JJ; Britten RJ; Wilt F; Davidson EH
    Dev Biol; 1987 Apr; 120(2):507-19. PubMed ID: 3030858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule.
    Peled-Kamar M; Hamilton P; Wilt FH
    Exp Cell Res; 2002 Jan; 272(1):56-61. PubMed ID: 11740865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SpSM30 gene family expression patterns in embryonic and adult biomineralized tissues of the sea urchin, Strongylocentrotus purpuratus.
    Killian CE; Croker L; Wilt FH
    Gene Expr Patterns; 2010; 10(2-3):135-9. PubMed ID: 20097309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization and preliminary X-ray analysis of the C-type lectin domain of the spicule matrix protein SM50 from Strongylocentrotus purpuratus.
    Juneja P; Rao A; Cölfen H; Diederichs K; Welte W
    Acta Crystallogr F Struct Biol Commun; 2014 Feb; 70(Pt 2):260-2. PubMed ID: 24637770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.