BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 31574136)

  • 1. Aerial-trained deep learning networks for surveying cetaceans from satellite imagery.
    Borowicz A; Le H; Humphries G; Nehls G; Höschle C; Kosarev V; Lynch HJ
    PLoS One; 2019; 14(10):e0212532. PubMed ID: 31574136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Potential of Satellite Imagery for Surveying Whales.
    Höschle C; Cubaynes HC; Clarke PJ; Humphries G; Borowicz A
    Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33535463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whale counting in satellite and aerial images with deep learning.
    Guirado E; Tabik S; Rivas ML; Alcaraz-Segura D; Herrera F
    Sci Rep; 2019 Oct; 9(1):14259. PubMed ID: 31582780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whales from space dataset, an annotated satellite image dataset of whales for training machine learning models.
    Cubaynes HC; Fretwell PT
    Sci Data; 2022 May; 9(1):245. PubMed ID: 35624202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Urban Tree Species Classification Using a WorldView-2/3 and LiDAR Data Fusion Approach and Deep Learning.
    Hartling S; Sagan V; Sidike P; Maimaitijiang M; Carron J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30875732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of baleen whale density estimates derived from overlapping satellite imagery and a shipborne survey.
    Bamford CCG; Kelly N; Dalla Rosa L; Cade DE; Fretwell PT; Trathan PN; Cubaynes HC; Mesquita AFC; Gerrish L; Friedlaender AS; Jackson JA
    Sci Rep; 2020 Jul; 10(1):12985. PubMed ID: 32737390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using remote sensing to detect whale strandings in remote areas: The case of sei whales mass mortality in Chilean Patagonia.
    Fretwell PT; Jackson JA; Ulloa Encina MJ; Häussermann V; Perez Alvarez MJ; Olavarría C; Gutstein CS
    PLoS One; 2019; 14(10):e0222498. PubMed ID: 31622348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine-learning model to delineate sub-surface agricultural drainage from satellite imagery.
    Redoloza FS; Williamson TN; Headman AO; Allred BJ
    J Environ Qual; 2023; 52(4):907-921. PubMed ID: 37170699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the performance of fusion based planet-scope and Sentinel-2 data for crop classification using inception inspired deep convolutional neural network.
    Minallah N; Tariq M; Aziz N; Khan W; Rehman AU; Belhaouari SB
    PLoS One; 2020; 15(9):e0239746. PubMed ID: 32986785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whales from space: counting southern right whales by satellite.
    Fretwell PT; Staniland IJ; Forcada J
    PLoS One; 2014; 9(2):e88655. PubMed ID: 24533131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Animal Monitoring Using Small Unmanned Aircraft Systems (sUAS) and Deep Learning Networks.
    Zhou M; Elmore JA; Samiappan S; Evans KO; Pfeiffer MB; Blackwell BF; Iglay RB
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residential scene classification for gridded population sampling in developing countries using deep convolutional neural networks on satellite imagery.
    Chew RF; Amer S; Jones K; Unangst J; Cajka J; Allpress J; Bruhn M
    Int J Health Geogr; 2018 May; 17(1):12. PubMed ID: 29743081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Target Detection from Satellite Imagery Using Machine Learning.
    Tahir A; Munawar HS; Akram J; Adil M; Ali S; Kouzani AZ; Mahmud MAP
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Annotating very high-resolution satellite imagery: A whale case study.
    Cubaynes HC; Clarke PJ; Goetz KT; Aldrich T; Fretwell PT; Leonard KE; Khan CB
    MethodsX; 2023; 10():102040. PubMed ID: 36793672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urban Land Use and Land Cover Classification Using Novel Deep Learning Models Based on High Spatial Resolution Satellite Imagery.
    Zhang P; Ke Y; Zhang Z; Wang M; Li P; Zhang S
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Machine Learning Techniques for the Detection and Classification of Sperm Whale Bioacoustics.
    Bermant PC; Bronstein MM; Wood RJ; Gero S; Gruber DF
    Sci Rep; 2019 Aug; 9(1):12588. PubMed ID: 31467331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery.
    Kattenborn T; Eichel J; Fassnacht FE
    Sci Rep; 2019 Nov; 9(1):17656. PubMed ID: 31776370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Effects of Optimal Combination of Spectral Bands on Deep Learning Model Predictions: A Case Study Based on Permafrost Tundra Landform Mapping Using High Resolution Multispectral Satellite Imagery.
    Bhuiyan MAE; Witharana C; Liljedahl AK; Jones BM; Daanen R; Epstein HE; Kent K; Griffin CG; Agnew A
    J Imaging; 2020 Sep; 6(9):. PubMed ID: 34460754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance across WorldView-2 and RapidEye for reproducible seagrass mapping.
    Coffer MM; Schaeffer BA; Zimmerman RC; Hill V; Li J; Islam KA; Whitman PJ
    Remote Sens Environ; 2020 Dec; 250():112036. PubMed ID: 34334824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning workflow to support in-flight processing of digital aerial imagery for wildlife population surveys.
    Ke TW; Yu SX; Koneff MD; Fronczak DL; Fara LJ; Harrison TJ; Landolt KL; Hlavacek EJ; Lubinski BR; White TP
    PLoS One; 2024; 19(4):e0288121. PubMed ID: 38568890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.