These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31574155)

  • 21. A computational method to aid the design and analysis of single cell RNA-seq experiments for cell type identification.
    Abrams D; Kumar P; Karuturi RKM; George J
    BMC Bioinformatics; 2019 Jun; 20(Suppl 11):275. PubMed ID: 31167661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Significance analysis for clustering with single-cell RNA-sequencing data.
    Grabski IN; Street K; Irizarry RA
    Nat Methods; 2023 Aug; 20(8):1196-1202. PubMed ID: 37429993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. dropClust: efficient clustering of ultra-large scRNA-seq data.
    Sinha D; Kumar A; Kumar H; Bandyopadhyay S; Sengupta D
    Nucleic Acids Res; 2018 Apr; 46(6):e36. PubMed ID: 29361178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Statistical significance of cluster membership for unsupervised evaluation of cell identities.
    Chung NC
    Bioinformatics; 2020 May; 36(10):3107-3114. PubMed ID: 32142108
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An active learning approach for clustering single-cell RNA-seq data.
    Lin X; Liu H; Wei Z; Roy SB; Gao N
    Lab Invest; 2022 Mar; 102(3):227-235. PubMed ID: 34244616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CIARA: a cluster-independent algorithm for identifying markers of rare cell types from single-cell sequencing data.
    Lubatti G; Stock M; Iturbide A; Ruiz Tejada Segura ML; Riepl M; Tyser RCV; Danese A; Colomé-Tatché M; Theis FJ; Srinivas S; Torres-Padilla ME; Scialdone A
    Development; 2023 Jun; 150(11):. PubMed ID: 37294170
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SSCC: A Novel Computational Framework for Rapid and Accurate Clustering Large-scale Single Cell RNA-seq Data.
    Ren X; Zheng L; Zhang Z
    Genomics Proteomics Bioinformatics; 2019 Apr; 17(2):201-210. PubMed ID: 31202000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Clustering Ensemble Method for Cell Type Detection by Multiobjective Particle Optimization.
    Liu Q; Zhao X; Wang G
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):1-14. PubMed ID: 34860653
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-Cell Clustering Based on Shared Nearest Neighbor and Graph Partitioning.
    Zhu X; Zhang J; Xu Y; Wang J; Peng X; Li HD
    Interdiscip Sci; 2020 Jun; 12(2):117-130. PubMed ID: 32086753
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluating the performance of dropout imputation and clustering methods for single-cell RNA sequencing data.
    Xu J; Cui L; Zhuang J; Meng Y; Bing P; He B; Tian G; Kwok Pui C; Wu T; Wang B; Yang J
    Comput Biol Med; 2022 Jul; 146():105697. PubMed ID: 35697529
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identifying Cell Subpopulations and Their Genetic Drivers from Single-Cell RNA-Seq Data Using a Biclustering Approach.
    Shi F; Huang H
    J Comput Biol; 2017 Jul; 24(7):663-674. PubMed ID: 28657835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MultiK: an automated tool to determine optimal cluster numbers in single-cell RNA sequencing data.
    Liu S; Thennavan A; Garay JP; Marron JS; Perou CM
    Genome Biol; 2021 Aug; 22(1):232. PubMed ID: 34412669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Applications of Community Detection Algorithms to Large Biological Datasets.
    Kanter I; Yaari G; Kalisky T
    Methods Mol Biol; 2021; 2243():59-80. PubMed ID: 33606252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations.
    Lei T; Chen R; Zhang S; Chen Y
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37769630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate Single-Cell Clustering through Ensemble Similarity Learning.
    Jeong H; Shin S; Yeom HG
    Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tuning parameters of dimensionality reduction methods for single-cell RNA-seq analysis.
    Raimundo F; Vallot C; Vert JP
    Genome Biol; 2020 Aug; 21(1):212. PubMed ID: 32831127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of single-cell classifiers for single-cell RNA sequencing data sets.
    Zhao X; Wu S; Fang N; Sun X; Fan J
    Brief Bioinform; 2020 Sep; 21(5):1581-1595. PubMed ID: 31675098
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CIPR: a web-based R/shiny app and R package to annotate cell clusters in single cell RNA sequencing experiments.
    Ekiz HA; Conley CJ; Stephens WZ; O'Connell RM
    BMC Bioinformatics; 2020 May; 21(1):191. PubMed ID: 32414321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-cell RNA-seq data clustering: A survey with performance comparison study.
    Li R; Guan J; Zhou S
    J Bioinform Comput Biol; 2020 Aug; 18(4):2040005. PubMed ID: 32795134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.