These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 3157424)

  • 1. Potential changes of frog afferent terminals in response to dopamine.
    Ryan GP; Hackman JC; Wohlberg CJ; Davidoff RA
    Brain Res; 1985 Mar; 328(2):283-90. PubMed ID: 3157424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epinephrine- and norepinephrine-evoked potential changes of frog primary afferent terminals: pharmacological characterization of alpha and beta components.
    Wohlberg CJ; Hackman JC; Ryan GP; Davidoff RA
    Brain Res; 1985 Feb; 327(1-2):289-301. PubMed ID: 2859079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serotonin and GABA-induced depolarizations of frog primary afferent fibers.
    Gharagozloo A; Holohean AM; Hackman JC; Davidoff RA
    Brain Res; 1990 Nov; 532(1-2):19-24. PubMed ID: 2178032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous dorsal root potentials arise from interneuronal activity in the isolated frog spinal cord.
    Ryan GP; Hackman JC; Wohlberg CJ; Davidoff RA
    Brain Res; 1984 Jun; 301(2):331-41. PubMed ID: 6203611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of frog spinal cord interneuronal activity by activation of 5-HT3 receptors.
    Holohean AM; Hackman JC; Davidoff RA
    Brain Res; 1995 Dec; 704(2):184-90. PubMed ID: 8788913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine acts on D2 receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta.
    Lacey MG; Mercuri NB; North RA
    J Physiol; 1987 Nov; 392():397-416. PubMed ID: 2451725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catecholamine effects on frog dorsal root terminals.
    Ryan GP; Hackman JC; Wohlberg CJ; Davidoff RA
    Neurosci Lett; 1983 Mar; 36(1):63-8. PubMed ID: 6856204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in vitro study of the effects of serotonin on frog primary afferent terminals.
    Holohean AM; Hackman JC; Davidoff RA
    Neurosci Lett; 1990 May; 113(2):175-80. PubMed ID: 2143002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory and indirect excitatory effects of dopamine on sympathetic preganglionic neurones in the neonatal rat spinal cord in vitro.
    Gladwell SJ; Coote JH
    Brain Res; 1999 Feb; 818(2):397-407. PubMed ID: 10082825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of 5-HT1C/2 receptors depresses polysynaptic reflexes and excitatory amino acid-induced motoneuron responses in frog spinal cord.
    Holohean AM; Hackman JC; Shope SB; Davidoff RA
    Brain Res; 1992 May; 579(1):8-16. PubMed ID: 1320445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic inhibitory dopamine receptors on noradrenergic nerve terminals: analysis of biphasic actions of dopamine and apomorphine on the release of endogenous norepinephrine in rat hypothalamic slices.
    Misu Y; Goshima Y; Ueda H; Kubo T
    J Pharmacol Exp Ther; 1985 Dec; 235(3):771-7. PubMed ID: 3001276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct and indirect actions of dopamine on the membrane potential in medium spiny neurons of the mouse neostriatum.
    Yasumoto S; Tanaka E; Hattori G; Maeda H; Higashi H
    J Neurophysiol; 2002 Mar; 87(3):1234-43. PubMed ID: 11877497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the potassium conductance increase activated by GABAB and dopamine D2 receptors in rat substantia nigra neurones.
    Lacey MG; Mercuri NB; North RA
    J Physiol; 1988 Jul; 401():437-53. PubMed ID: 2459376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Peculiarities of dopamine receptors on the membrane of spinal cord multipolar neurons of the brook lamprey Lampetra planeri].
    Bukinich Aa; Tsvetkov EA; Veselkin NP
    Zh Evol Biokhim Fiziol; 2007; 43(1):39-45. PubMed ID: 17408091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The excitatory and inhibitory modulation of primary afferent fibre-evoked responses of ventral roots in the neonatal rat spinal cord exerted by nitric oxide.
    Kurihara T; Yoshioka K
    Br J Pharmacol; 1996 Aug; 118(7):1743-53. PubMed ID: 8842440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanism underlying dopamine D1 and D2 receptor-mediated inhibition of dopaminergic neurones in the ventral tegmental area in vitro.
    Momiyama T; Todo N; Sasa M
    Br J Pharmacol; 1993 Aug; 109(4):933-40. PubMed ID: 8104652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of dopamine receptors mediating inhibition of excitatory synaptic transmission in the rat hippocampal slice.
    Hsu KS
    J Neurophysiol; 1996 Sep; 76(3):1887-95. PubMed ID: 8890301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine D2 receptor activation depolarizes rat supraoptic neurones in hypothalamic explants.
    Yang CR; Bourque CW; Renaud LP
    J Physiol; 1991 Nov; 443():405-19. PubMed ID: 1688025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of two taurine receptor subtypes on the primary afferent terminal of frog spinal cord.
    Kudo Y; Akiyoshi E; Akagi H
    Br J Pharmacol; 1988 Aug; 94(4):1051-6. PubMed ID: 2850054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulatory actions of serotonin, norepinephrine, dopamine, and acetylcholine in spinal cord deep dorsal horn neurons.
    Garraway SM; Hochman S
    J Neurophysiol; 2001 Nov; 86(5):2183-94. PubMed ID: 11698510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.