BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 3157431)

  • 1. Glucose 1,6-bisphosphate decline in human erythrocytes: possible involvement of phosphoglucomutase PGM2 isoenzymes.
    Ninfali P; Piatti E; Accorsi A; Palma F; Fazi A; Tozzi MG; Fornaini G
    Can J Biochem Cell Biol; 1985 Mar; 63(3):162-6. PubMed ID: 3157431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Degradative pathways of glucose 1,6-diphosphate in human erythrocytes].
    Ninfali P; Piatti E; Palma F; Chiarantini L; Piacentini MP
    Boll Soc Ital Biol Sper; 1984 Sep; 60(9):1667-9. PubMed ID: 6240986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human erythrocyte phosphoglucomutase: comparison of the kinetic properties of PGM1 and PGM2 isoenzymes.
    Ninfali P; Accorsi A; Palma F; Fazi A; Piatti E; Chiarantini L; Fornaini G
    Biochimie; 1984; 66(9-10):617-23. PubMed ID: 6240990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose-1,6-P2 synthesis, phosphoglucomutase and phosphoribomutase correlate with glucose-1,6-P2 concentration in mammals red blood cells.
    Accorsi A; Fazi A; Ninfali P; Piatti E; Palma F; Piacentini MP; Fornaini G
    Comp Biochem Physiol B; 1985; 80(4):839-42. PubMed ID: 2986904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relevance of glucose 1,6-bisphosphate formation and degradation to human red blood cell metabolism.
    Fornaini G; Bossù M; Fazi A; Piatti E; Ninfali P; Palma F; Piacentini MP; Accorsi A
    Ital J Biochem; 1986; 35(5):310-5. PubMed ID: 2948936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Glucose 1,6-diphosphate in the erythrocytes of various species of mammal].
    Accorsi A; Fazi A; Chiarantini L; Piacentini MP; Malavolta M
    Boll Soc Ital Biol Sper; 1984 Sep; 60(9):1663-5. PubMed ID: 6240985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationships between the age-dependent decay of glucose-1,6-bisphosphate synthesis, phosphoribomutase and phosphoglucomutase in human red cells.
    Accorsi A; Fazi A; Piatti E; Piacentini MP; Magnani M; Fornaini G
    Mech Ageing Dev; 1986 Oct; 36(2):133-41. PubMed ID: 3023765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity of glucose 1,6-bisphosphate synthesis in rabbit skeletal muscle.
    Piatti E; Accorsi A; Piacentini MP; Fazi A
    Comp Biochem Physiol B; 1991; 100(1):67-71. PubMed ID: 1661660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increase in glucose 1,6-bisphosphate levels, activation of phosphofructokinase and phosphoglucomutase, and inhibition of glucose 1,6-bisphosphatase in muscle induced by trifluoperazine.
    Frucht H; Kaplansky M; Beitner R
    Biochem Med; 1984 Feb; 31(1):122-9. PubMed ID: 6331422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of bradykinin on glucose 1,6-bisphosphate and cyclic GMP levels and on the activities of glucose 1,6-bisphosphatase, phosphofructokinase and phosphoglucomutase in muscle.
    Frucht H; Lilling G; Beitner R
    Int J Biochem; 1984; 16(4):397-402. PubMed ID: 6325266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fructose 2,6-bisphosphate and glucose 1,6-bisphosphate in avian and mammalian erythroid cells.
    Carreras J; Bartrons R; Espinet C; Gallego C
    Biomed Biochim Acta; 1987; 46(2-3):S258-62. PubMed ID: 2954546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trifluoperazine abolishes the actions of bradykinin on glucose 1,6-bisphosphate levels and on the activities of glucose 1,6-bisphosphatase, phosphofructokinase and phosphoglucomutase.
    Beitner R; Kaplansky M; Frucht H
    Int J Biochem; 1985; 17(4):545-50. PubMed ID: 2989025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fructose 2,6-bisphosphate and glucose 1,6-bisphosphate in erythrocytes during chicken development.
    Espinet C; Bartrons R; Carreras J
    FEBS Lett; 1986 Dec; 209(2):254-6. PubMed ID: 3792546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The participation of glucose-1,6-diphosphate in the regulation of hexokinase and phosphoglucomutase activities in brains of young and adult rats.
    Beitner R; Klein S; Nordenberg J
    Int J Biochem; 1982; 14(3):195-9. PubMed ID: 6461568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of lithium on the activities of phosphofructokinase and phosphoglucomutase and on glucose-1,6-diphosphate levels in rat muscles, brain and liver.
    Nordenberg J; Kaplansky M; Beery E; Klein S; Beitner R
    Biochem Pharmacol; 1982 Mar; 31(6):1025-31. PubMed ID: 6211175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The metabolic role of glucose 1,6-P2 in human erythrocytes studied by encapsulation procedures.
    Accorsi A; Piatti E; Piacentini MP; Fazi A
    Adv Exp Med Biol; 1992; 326():119-26. PubMed ID: 1338260
    [No Abstract]   [Full Text] [Related]  

  • 17. Glucose 1,6-bisphosphate-overloaded erythrocytes: a strategy to investigate the metabolic role of the bisphosphate in red blood cells.
    Piatti E; Accorsi A; Piacentini MP; Fazi A
    Arch Biochem Biophys; 1992 Feb; 293(1):117-21. PubMed ID: 1309980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complementarity in the regulation of phosphoglucomutase, phosphofructokinase and hexokinase; the role of glucose 1,6-bisphosphate.
    Beitner R; Haberman S; Livni L
    Biochim Biophys Acta; 1975 Aug; 397(2):355-69. PubMed ID: 125609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isoelectric points and charge-dependent separation of erythrocyte phosphoglucomutase isoenzymes (PGM1 and PGM2).
    Accorsi A; Piatti E; Fazi A; Piacentini MP; Fornaini G
    Ital J Biochem; 1987; 36(4):267-74. PubMed ID: 2962967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics and mechanism of the PO3 transfer process in the phosphoglucomutase reaction.
    Ray WJ; Long JW
    Biochemistry; 1976 Sep; 15(18):3993-4006. PubMed ID: 963018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.