BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 31574317)

  • 1. Connecting central carbon and aromatic amino acid metabolisms to improve de novo 2-phenylethanol production in Saccharomyces cerevisiae.
    Hassing EJ; de Groot PA; Marquenie VR; Pronk JT; Daran JG
    Metab Eng; 2019 Dec; 56():165-180. PubMed ID: 31574317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of the Saccharomyces cerevisiae ARO8 gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose.
    Romagnoli G; Knijnenburg TA; Liti G; Louis EJ; Pronk JT; Daran JM
    Yeast; 2015 Jan; 32(1):29-45. PubMed ID: 24733517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpressing enzymes of the Ehrlich pathway and deleting genes of the competing pathway in Saccharomyces cerevisiae for increasing 2-phenylethanol production from glucose.
    Shen L; Nishimura Y; Matsuda F; Ishii J; Kondo A
    J Biosci Bioeng; 2016 Jul; 122(1):34-9. PubMed ID: 26975754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding Upon Styrene Biosynthesis to Engineer a Novel Route to 2-Phenylethanol.
    Machas MS; McKenna R; Nielsen DR
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28799719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway.
    Chen X; Wang Z; Guo X; Liu S; He X
    J Biotechnol; 2017 Jan; 242():83-91. PubMed ID: 27908775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering
    Gu Y; Ma J; Zhu Y; Ding X; Xu P
    ACS Synth Biol; 2020 Aug; 9(8):2096-2106. PubMed ID: 32650638
    [No Abstract]   [Full Text] [Related]  

  • 7. Reconstruction of metabolic module with improved promoter strength increases the productivity of 2-phenylethanol in Saccharomyces cerevisiae.
    Wang Z; Jiang M; Guo X; Liu Z; He X
    Microb Cell Fact; 2018 Apr; 17(1):60. PubMed ID: 29642888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rewiring central carbon metabolism for tyrosol and salidroside production in Saccharomyces cerevisiae.
    Guo W; Huang Q; Feng Y; Tan T; Niu S; Hou S; Chen Z; Du ZQ; Shen Y; Fang X
    Biotechnol Bioeng; 2020 Aug; 117(8):2410-2419. PubMed ID: 32369184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals.
    Liu Q; Yu T; Li X; Chen Y; Campbell K; Nielsen J; Chen Y
    Nat Commun; 2019 Oct; 10(1):4976. PubMed ID: 31672987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of hydroxymandelate synthases and the aromatic amino acid pathway enables de novo biosynthesis of mandelic and 4-hydroxymandelic acid with Saccharomyces cerevisiae.
    Reifenrath M; Boles E
    Metab Eng; 2018 Jan; 45():246-254. PubMed ID: 29330068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway.
    Kim B; Cho BR; Hahn JS
    Biotechnol Bioeng; 2014 Jan; 111(1):115-24. PubMed ID: 23836015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mating of 2 Laboratory Saccharomyces cerevisiae Strains Resulted in Enhanced Production of 2-Phenylethanol by Biotransformation of L-Phenylalanine.
    Mierzejewska J; Tymoszewska A; Chreptowicz K; Krol K
    J Mol Microbiol Biotechnol; 2017; 27(2):81-90. PubMed ID: 28231564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xylosylation as an effective means for reducing yeast growth inhibition by 2-phenylethanol.
    Zhang H; Fauré R; François JM; Blanc PJ; de Billerbeck GM
    J Basic Microbiol; 2013 Sep; 53(9):792-5. PubMed ID: 23417851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilevel metabolic engineering of Bacillus licheniformis for de novo biosynthesis of 2-phenylethanol.
    Zhan Y; Shi J; Xiao Y; Zhou F; Wang H; Xu H; Li Z; Yang S; Cai D; Chen S
    Metab Eng; 2022 Mar; 70():43-54. PubMed ID: 35038552
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Liu Y; Liu H; Hu H; Ng KR; Yang R; Lyu X
    J Agric Food Chem; 2022 Jun; 70(24):7490-7499. PubMed ID: 35649155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of para-aminobenzoic acid from different carbon-sources in engineered Saccharomyces cerevisiae.
    Averesch NJ; Winter G; Krömer JO
    Microb Cell Fact; 2016 May; 15():89. PubMed ID: 27230236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of a styrene-derived pathway for 2-phenylethanol production in budding yeast.
    Mo Q; Chen H; Fan C; Zhang D; Liu L; Fu B; Yuan J
    Appl Microbiol Biotechnol; 2021 Mar; 105(6):2333-2340. PubMed ID: 33649922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of 2-phenylethanol from glucose with genetically engineered Kluyveromyces marxianus.
    Kim TY; Lee SW; Oh MK
    Enzyme Microb Technol; 2014; 61-62():44-7. PubMed ID: 24910335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving 2-phenylethanol production via Ehrlich pathway using genetic engineered Saccharomyces cerevisiae strains.
    Yin S; Zhou H; Xiao X; Lang T; Liang J; Wang C
    Curr Microbiol; 2015 May; 70(5):762-7. PubMed ID: 25681107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The same genetic regulation strategy produces inconsistent effects in different Saccharomyces cerevisiae strains for 2-phenylethanol production.
    Xu Z; Lin L; Chen Z; Wang K; Sun J; Zhu T
    Appl Microbiol Biotechnol; 2022 Jun; 106(11):4041-4052. PubMed ID: 35665835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.