These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 31574369)
21. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Yang YP; Zhang HM; Yuan HY; Duan GL; Jin DC; Zhao FJ; Zhu YG Environ Pollut; 2018 May; 236():598-608. PubMed ID: 29433100 [TBL] [Abstract][Full Text] [Related]
22. Water management impacts rice methylmercury and the soil microbiome. Rothenberg SE; Anders M; Ajami NJ; Petrosino JF; Balogh E Sci Total Environ; 2016 Dec; 572():608-617. PubMed ID: 27450246 [TBL] [Abstract][Full Text] [Related]
23. Effects of alternate wetting and drying on oxyanion-forming and cationic trace elements in rice paddy soils: impacts on arsenic, cadmium, and micronutrients in rice. Abu-Ali L; Maguffin SC; Rohila JS; McClung AM; Reid MC Environ Geochem Health; 2023 Nov; 45(11):8135-8151. PubMed ID: 37548848 [TBL] [Abstract][Full Text] [Related]
24. Water management regimes alter Pb uptake and translocation in fragrant rice. Ashraf U; Hussain S; Akbar N; Anjum SA; Hassan W; Tang X Ecotoxicol Environ Saf; 2018 Mar; 149():128-134. PubMed ID: 29156304 [TBL] [Abstract][Full Text] [Related]
25. Improved yield and Zn accumulation for rice grain by Zn fertilization and optimized water management. Wang YY; Wei YY; Dong LX; Lu LL; Feng Y; Zhang J; Pan FS; Yang XE J Zhejiang Univ Sci B; 2014 Apr; 15(4):365-74. PubMed ID: 24711357 [TBL] [Abstract][Full Text] [Related]
26. Irrigation management for arsenic mitigation in rice grain: Timing and severity of a single soil drying. Carrijo DR; Li C; Parikh SJ; Linquist BA Sci Total Environ; 2019 Feb; 649():300-307. PubMed ID: 30173036 [TBL] [Abstract][Full Text] [Related]
27. Amendment damages the function of continuous flooding in decreasing Cd and Pb uptake by rice in acid paddy soil. Ye X; Li H; Zhang L; Chai R; Tu R; Gao H Ecotoxicol Environ Saf; 2018 Jan; 147():708-714. PubMed ID: 28938141 [TBL] [Abstract][Full Text] [Related]
28. Do soil Fe transformation and secretion of low-molecular-weight organic acids affect the availability of Cd to rice? Chen X; Yang Y; Liu D; Zhang C; Ge Y Environ Sci Pollut Res Int; 2015 Dec; 22(24):19497-506. PubMed ID: 26260840 [TBL] [Abstract][Full Text] [Related]
29. Comparative effects on arsenic uptake between iron (hydro)oxides on root surface and rhizosphere of rice in an alkaline paddy soil. Yang Y; Hu H; Fu Q; Xing Z; Chen X; Zhu J Environ Sci Pollut Res Int; 2020 Mar; 27(7):6995-7004. PubMed ID: 31883069 [TBL] [Abstract][Full Text] [Related]
30. Alternate wetting and drying irrigation and phosphorus rates affect grain yield and quality and heavy metal accumulation in rice. Song T; Das D; Hu Q; Yang F; Zhang J Sci Total Environ; 2021 Jan; 752():141862. PubMed ID: 32889281 [TBL] [Abstract][Full Text] [Related]
31. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Linquist BA; Anders MM; Adviento-Borbe MA; Chaney RL; Nalley LL; da Rosa EF; van Kessel C Glob Chang Biol; 2015 Jan; 21(1):407-17. PubMed ID: 25099317 [TBL] [Abstract][Full Text] [Related]
32. Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system. Yin D; Wang X; Peng B; Tan C; Ma LQ Chemosphere; 2017 Nov; 186():928-937. PubMed ID: 28830065 [TBL] [Abstract][Full Text] [Related]
33. Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice. Yu HY; Wang X; Li F; Li B; Liu C; Wang Q; Lei J Environ Pollut; 2017 May; 224():136-147. PubMed ID: 28202263 [TBL] [Abstract][Full Text] [Related]
34. [Transformation and mobility of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages of rice]. Yang WT; Wang YJ; Zhou H; Yi KX; Zeng M; Peng PQ; Liao BH Huan Jing Ke Xue; 2015 Feb; 36(2):694-9. PubMed ID: 26031100 [TBL] [Abstract][Full Text] [Related]
35. Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Yamaguchi N; Ohkura T; Takahashi Y; Maejima Y; Arao T Environ Sci Technol; 2014; 48(3):1549-56. PubMed ID: 24384039 [TBL] [Abstract][Full Text] [Related]
36. Immobilization of Cd in paddy soil using moisture management and amendment. Li J; Xu Y Environ Sci Pollut Res Int; 2015 Apr; 22(7):5580-6. PubMed ID: 25388557 [TBL] [Abstract][Full Text] [Related]
37. Water managements limit heavy metal accumulation in rice: Dual effects of iron-plaque formation and microbial communities. Zhang Q; Chen H; Huang D; Xu C; Zhu H; Zhu Q Sci Total Environ; 2019 Oct; 687():790-799. PubMed ID: 31412482 [TBL] [Abstract][Full Text] [Related]
38. Effects of Fe-oxidizing bacteria (FeOB) on iron plaque formation, As concentrations and speciation in rice (Oryza sativa L.). Xiao A; Li WC; Ye Z Ecotoxicol Environ Saf; 2020 Mar; 190():110136. PubMed ID: 31901806 [TBL] [Abstract][Full Text] [Related]
39. Arsenic dynamics in porewater of an intermittently irrigated paddy field in Bangladesh. Roberts LC; Hug SJ; Voegelin A; Dittmar J; Kretzschmar R; Wehrli B; Saha GC; Badruzzaman AB; Ali MA Environ Sci Technol; 2011 Feb; 45(3):971-6. PubMed ID: 21166387 [TBL] [Abstract][Full Text] [Related]
40. Effects of mild alternate wetting and drying irrigation and mid-season drainage on CH Liao B; Wu X; Yu Y; Luo S; Hu R; Lu G Sci Total Environ; 2020 Jan; 698():134212. PubMed ID: 31783470 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]