These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 31574486)
1. Osteochondral tissue regenerated via a strategy by stacking pre-differentiated BMSC sheet on fibrous mesh in a gradient. Jin L; Zhao W; Ren B; Li L; Hu X; Zhang X; Cai Q; Ao Y; Yang X Biomed Mater; 2019 Nov; 14(6):065017. PubMed ID: 31574486 [TBL] [Abstract][Full Text] [Related]
2. Mimicking osteochondral interface using pre-differentiated BMSCs/fibrous mesh complexes to promote tissue regeneration. Fu L; Zhao W; Zhang L; Gao C; Zhang X; Yang X; Cai Q J Biomater Sci Polym Ed; 2022 Nov; 33(16):2081-2103. PubMed ID: 35765951 [TBL] [Abstract][Full Text] [Related]
3. In vitro generation of a multilayered osteochondral construct with an osteochondral interface using rabbit bone marrow stromal cells and a silk peptide-based scaffold. Chen K; Shi P; Teh TK; Toh SL; Goh JCh J Tissue Eng Regen Med; 2016 Apr; 10(4):284-93. PubMed ID: 23413023 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques. Zhang T; Zhang H; Zhang L; Jia S; Liu J; Xiong Z; Sun W Biofabrication; 2017 May; 9(2):025021. PubMed ID: 28462906 [TBL] [Abstract][Full Text] [Related]
5. Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots. Berninger MT; Wexel G; Rummeny EJ; Imhoff AB; Anton M; Henning TD; Vogt S J Vis Exp; 2013 May; (75):e4423. PubMed ID: 23728213 [TBL] [Abstract][Full Text] [Related]
6. Osteogenesis and chondrogenesis of biomimetic integrated porous PVA/gel/V-n-HA/pa6 scaffolds and BMSCs construct in repair of articular osteochondral defect. Li X; Li Y; Zuo Y; Qu D; Liu Y; Chen T; Jiang N; Li H; Li J J Biomed Mater Res A; 2015 Oct; 103(10):3226-36. PubMed ID: 25772000 [TBL] [Abstract][Full Text] [Related]
7. An injectable continuous stratified structurally and functionally biomimetic construct for enhancing osteochondral regeneration. Zhu Y; Kong L; Farhadi F; Xia W; Chang J; He Y; Li H Biomaterials; 2019 Feb; 192():149-158. PubMed ID: 30448699 [TBL] [Abstract][Full Text] [Related]
8. Extracellular matrix derived from allogenic decellularized bone marrow mesenchymal stem cell sheets for the reconstruction of osteochondral defects in rabbits. Wang Z; Han L; Sun T; Ma J; Sun S; Ma L; Wu B Acta Biomater; 2020 Dec; 118():54-68. PubMed ID: 33068746 [TBL] [Abstract][Full Text] [Related]
9. Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells in a rabbit model. Lam J; Lu S; Lee EJ; Trachtenberg JE; Meretoja VV; Dahlin RL; van den Beucken JJ; Tabata Y; Wong ME; Jansen JA; Mikos AG; Kasper FK Osteoarthritis Cartilage; 2014 Sep; 22(9):1291-300. PubMed ID: 25008204 [TBL] [Abstract][Full Text] [Related]
10. Articular Cartilage Repair with Mesenchymal Stem Cells After Chondrogenic Priming: A Pilot Study. Bornes TD; Adesida AB; Jomha NM Tissue Eng Part A; 2018 May; 24(9-10):761-774. PubMed ID: 28982297 [TBL] [Abstract][Full Text] [Related]
11. Scaffold-free bioprinted osteogenic and chondrogenic systems to model osteochondral physiology. Breathwaite EK; Weaver JR; Murchison AC; Treadwell ML; Odanga JJ; Lee JB Biomed Mater; 2019 Oct; 14(6):065010. PubMed ID: 31491773 [TBL] [Abstract][Full Text] [Related]
12. [Repairing porcine knee joint osteochondral defects at non-weight bearing area by autologous BMSC]. Zhou GD; Wang XY; Miao CL; Liu TY; Zhu L; Liu DL; Cui L; Liu W; Cao YL Zhonghua Yi Xue Za Zhi; 2004 Jun; 84(11):925-31. PubMed ID: 15329281 [TBL] [Abstract][Full Text] [Related]
13. Hydrogel to guide chondrogenesis versus osteogenesis of mesenchymal stem cells for fabrication of cartilaginous tissues. Chen J; Chin A; Almarza AJ; Taboas JM Biomed Mater; 2020 May; 15(4):045006. PubMed ID: 31470441 [TBL] [Abstract][Full Text] [Related]
14. Controlled domain gels with a biomimetic gradient environment for osteochondral tissue regeneration. Zhang N; Wang Y; Zhang J; Guo J; He J Acta Biomater; 2021 Nov; 135():304-317. PubMed ID: 34454084 [TBL] [Abstract][Full Text] [Related]
15. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells induced by acellular cartilage sheets. Xue JX; Gong YY; Zhou GD; Liu W; Cao Y; Zhang WJ Biomaterials; 2012 Aug; 33(24):5832-40. PubMed ID: 22608213 [TBL] [Abstract][Full Text] [Related]
16. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration. Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097 [TBL] [Abstract][Full Text] [Related]
17. Repair of articular cartilage defects with acellular cartilage sheets in a swine model. Xue J; He A; Zhu Y; Liu Y; Li D; Yin Z; Zhang W; Liu W; Cao Y; Zhou G Biomed Mater; 2018 Feb; 13(2):025016. PubMed ID: 29125133 [TBL] [Abstract][Full Text] [Related]
18. Repairing a bone defect with a three-dimensional cellular construct composed of a multi-layered cell sheet on electrospun mesh. Ren Z; Ma S; Jin L; Liu Z; Liu D; Zhang X; Cai Q; Yang X Biofabrication; 2017 Jun; 9(2):025036. PubMed ID: 28631613 [TBL] [Abstract][Full Text] [Related]
19. Strategy of a cell-derived extracellular matrix for the construction of an osteochondral interlayer. Gao C; Fu L; Yu Y; Zhang X; Yang X; Cai Q Biomater Sci; 2022 Nov; 10(22):6472-6485. PubMed ID: 36173310 [TBL] [Abstract][Full Text] [Related]
20. A novel construct with biomechanical flexibility for articular cartilage regeneration. Cheng B; Tu T; Shi X; Liu Y; Zhao Y; Zhao Y; Li Y; Chen H; Chen Y; Zhang M Stem Cell Res Ther; 2019 Sep; 10(1):298. PubMed ID: 31547887 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]