These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
810 related articles for article (PubMed ID: 31574493)
1. The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis. Brennan CM; Eichholz KF; Hoey DA Biomed Mater; 2019 Nov; 14(6):065016. PubMed ID: 31574493 [TBL] [Abstract][Full Text] [Related]
2. Melt Electrowritten Sandwich Scaffold Technique Using Sulforhodamine B to Monitor Stem Cell Behavior. Turner PR; Yoshida M; Ali MA; Cabral JD Tissue Eng Part C Methods; 2020 Oct; 26(10):519-527. PubMed ID: 32977739 [No Abstract] [Full Text] [Related]
3. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying. Hejazi F; Mirzadeh H J Mater Sci Mater Med; 2016 Sep; 27(9):143. PubMed ID: 27550014 [TBL] [Abstract][Full Text] [Related]
4. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. Chen G; Dong C; Yang L; Lv Y ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287 [TBL] [Abstract][Full Text] [Related]
5. Osteogenic Differentiation of Mesenchymal Stem Cells with Silica-Coated Gold Nanoparticles for Bone Tissue Engineering. Gandhimathi C; Quek YJ; Ezhilarasu H; Ramakrishna S; Bay BH; Srinivasan DK Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31623264 [TBL] [Abstract][Full Text] [Related]
6. Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering. Carvalho MS; Silva JC; Udangawa RN; Cabral JMS; Ferreira FC; da Silva CL; Linhardt RJ; Vashishth D Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():479-490. PubMed ID: 30889723 [TBL] [Abstract][Full Text] [Related]
7. Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds. Bean AC; Tuan RS Biomed Mater; 2015 Jan; 10(1):015018. PubMed ID: 25634427 [TBL] [Abstract][Full Text] [Related]
8. Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application. Shahverdi M; Seifi S; Akbari A; Mohammadi K; Shamloo A; Movahhedy MR Sci Rep; 2022 Nov; 12(1):19935. PubMed ID: 36402790 [TBL] [Abstract][Full Text] [Related]
9. Extracellular matrix decorated polycaprolactone scaffolds for improved mesenchymal stem/stromal cell osteogenesis towards a patient-tailored bone tissue engineering approach. Silva JC; Carvalho MS; Udangawa RN; Moura CS; Cabral JMS; L da Silva C; Ferreira FC; Vashishth D; Linhardt RJ J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2153-2166. PubMed ID: 31916699 [TBL] [Abstract][Full Text] [Related]
10. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Wang T; Yang X; Qi X; Jiang C J Transl Med; 2015 May; 13():152. PubMed ID: 25952675 [TBL] [Abstract][Full Text] [Related]
11. Osteogenic Differentiation of Human Mesenchymal Stem cells in a 3D Woven Scaffold. Persson M; Lehenkari PP; Berglin L; Turunen S; Finnilä MAJ; Risteli J; Skrifvars M; Tuukkanen J Sci Rep; 2018 Jul; 8(1):10457. PubMed ID: 29993043 [TBL] [Abstract][Full Text] [Related]
12. Effect of micro- and macroporosity of bone tissue three-dimensional-poly(epsilon-caprolactone) scaffold on human mesenchymal stem cells invasion, proliferation, and differentiation in vitro. Salerno A; Guarnieri D; Iannone M; Zeppetelli S; Netti PA Tissue Eng Part A; 2010 Aug; 16(8):2661-73. PubMed ID: 20687813 [TBL] [Abstract][Full Text] [Related]
13. Cationic osteogenic peptide P15-CSP coatings promote 3-D osteogenesis in poly(epsilon-caprolactone) scaffolds of distinct pore size. Li X; Ghavidel Mehr N; Guzmán-Morales J; Favis BD; De Crescenzo G; Yakandawala N; Hoemann CD J Biomed Mater Res A; 2017 Aug; 105(8):2171-2181. PubMed ID: 28380658 [TBL] [Abstract][Full Text] [Related]
15. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering. Chen Z; Song Y; Zhang J; Liu W; Cui J; Li H; Chen F Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():341-351. PubMed ID: 28024596 [TBL] [Abstract][Full Text] [Related]
16. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Chen Z; Yan X; Yin S; Liu L; Liu X; Zhao G; Ma W; Qi W; Ren Z; Liao H; Liu M; Cai D; Fang H Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110289. PubMed ID: 31753386 [TBL] [Abstract][Full Text] [Related]
17. Ectopic bone formation in cell-seeded poly(ethylene oxide)/poly(butylene terephthalate) copolymer scaffolds of varying porosity. Claase MB; de Bruijn JD; Grijpma DW; Feijen J J Mater Sci Mater Med; 2007 Jul; 18(7):1299-307. PubMed ID: 17268874 [TBL] [Abstract][Full Text] [Related]
18. The osteogenesis of bone marrow stem cells on mPEG-PCL-mPEG/hydroxyapatite composite scaffold via solid freeform fabrication. Liao HT; Chen YY; Lai YT; Hsieh MF; Jiang CP Biomed Res Int; 2014; 2014():321549. PubMed ID: 24868523 [TBL] [Abstract][Full Text] [Related]
19. Nanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells. Gaharwar AK; Mukundan S; Karaca E; Dolatshahi-Pirouz A; Patel A; Rangarajan K; Mihaila SM; Iviglia G; Zhang H; Khademhosseini A Tissue Eng Part A; 2014 Aug; 20(15-16):2088-101. PubMed ID: 24842693 [TBL] [Abstract][Full Text] [Related]
20. Osteoregenerative Potential of 3D-Printed Poly Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]