These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 31574644)
1. Mesoscopic simulations of anisotropic chemically powered nanomotors. de Buyl P Phys Rev E; 2019 Aug; 100(2-1):022603. PubMed ID: 31574644 [TBL] [Abstract][Full Text] [Related]
2. Passive and active colloidal chemotaxis in a microfluidic channel: mesoscopic and stochastic models. Deprez L; de Buyl P Soft Matter; 2017 May; 13(19):3532-3543. PubMed ID: 28443845 [TBL] [Abstract][Full Text] [Related]
3. Active Brownian particle in homogeneous media of different viscosities: numerical simulations. Lisin EA; Vaulina OS; Lisina II; Petrov OF Phys Chem Chem Phys; 2021 Aug; 23(30):16248-16257. PubMed ID: 34308937 [TBL] [Abstract][Full Text] [Related]
4. Self-propelled Brownian spinning top: dynamics of a biaxial swimmer at low Reynolds numbers. Wittkowski R; Löwen H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021406. PubMed ID: 22463211 [TBL] [Abstract][Full Text] [Related]
10. Understanding collective dynamics of soft active colloids by binary scattering. Hanke T; Weber CA; Frey E Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052309. PubMed ID: 24329266 [TBL] [Abstract][Full Text] [Related]
11. Active colloidal suspensions exhibit polar order under gravity. Enculescu M; Stark H Phys Rev Lett; 2011 Jul; 107(5):058301. PubMed ID: 21867100 [TBL] [Abstract][Full Text] [Related]
12. Cyclic force driven colloidal self-assembly near a solid surface. Rahman MM; Williams SJ J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1402-1410. PubMed ID: 34587527 [TBL] [Abstract][Full Text] [Related]
14. Distinguishing advective and powered motion in self-propelled colloids. Byun YM; Lammert PE; Hong Y; Sen A; Crespi VH J Phys Condens Matter; 2017 Nov; 29(44):445101. PubMed ID: 28850045 [TBL] [Abstract][Full Text] [Related]
15. Morphology-Tailored Dynamic State Transition in Active-Passive Colloidal Assemblies. Yu N; Shah ZH; Yang M; Gao Y Research (Wash D C); 2024; 7():0304. PubMed ID: 38269028 [TBL] [Abstract][Full Text] [Related]
16. Active Brownian Motion with Orientation-Dependent Motility: Theory and Experiments. Sprenger AR; Fernandez-Rodriguez MA; Alvarez L; Isa L; Wittkowski R; Löwen H Langmuir; 2020 Jun; 36(25):7066-7073. PubMed ID: 31975603 [TBL] [Abstract][Full Text] [Related]
17. Interaction dynamics of two colloids in a single optical potential. Tränkle B; Speidel M; Rohrbach A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021401. PubMed ID: 23005757 [TBL] [Abstract][Full Text] [Related]
18. Coarsening dynamics of binary liquids with active rotation. Sabrina S; Spellings M; Glotzer SC; Bishop KJ Soft Matter; 2015 Nov; 11(43):8409-16. PubMed ID: 26345231 [TBL] [Abstract][Full Text] [Related]
19. Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model. Dzwinel W; Yuen DA; Boryczko K J Mol Model; 2002 Jan; 8(1):33-43. PubMed ID: 12111400 [TBL] [Abstract][Full Text] [Related]
20. Brownian motion of arbitrarily shaped particles in two dimensions. Chakrabarty A; Konya A; Wang F; Selinger JV; Sun K; Wei QH Langmuir; 2014 Nov; 30(46):13844-53. PubMed ID: 25357180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]