These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 31574664)
21. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations. Hu G; Ma A; Wang J J Chem Inf Model; 2017 Apr; 57(4):918-928. PubMed ID: 28345904 [TBL] [Abstract][Full Text] [Related]
22. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli. Drogalis LK; Batey RT PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551 [TBL] [Abstract][Full Text] [Related]
23. Molecular dynamics simulation study of the binding of purine bases to the aptamer domain of the guanine sensing riboswitch. Villa A; Wöhnert J; Stock G Nucleic Acids Res; 2009 Aug; 37(14):4774-86. PubMed ID: 19515936 [TBL] [Abstract][Full Text] [Related]
24. Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy. Warhaut S; Mertinkus KR; Höllthaler P; Fürtig B; Heilemann M; Hengesbach M; Schwalbe H Nucleic Acids Res; 2017 May; 45(9):5512-5522. PubMed ID: 28204648 [TBL] [Abstract][Full Text] [Related]
25. A structural intermediate pre-organizes the add adenine riboswitch for ligand recognition. St-Pierre P; Shaw E; Jacques S; Dalgarno PA; Perez-Gonzalez C; Picard-Jean F; Penedo JC; Lafontaine DA Nucleic Acids Res; 2021 Jun; 49(10):5891-5904. PubMed ID: 33963862 [TBL] [Abstract][Full Text] [Related]
26. Molecular Dynamics Simulations of the Aptamer Domain of Guanidinium Ion Binding Riboswitch Negi I; Mahmi AS; Seelam Prabhakar P; Sharma P J Chem Inf Model; 2021 Oct; 61(10):5243-5255. PubMed ID: 34609872 [TBL] [Abstract][Full Text] [Related]
27. Structural insights into the interactions of xpt riboswitch with novel guanine analogues: a molecular dynamics simulation study. Jain SS; Sonavane UB; Uppuladinne MV; McLaughlin EC; Wang W; Black S; Joshi RR J Biomol Struct Dyn; 2015; 33(2):234-43. PubMed ID: 24404773 [TBL] [Abstract][Full Text] [Related]
28. Ligand-Induced Stabilization of a Duplex-like Architecture Is Crucial for the Switching Mechanism of the SAM-III Riboswitch. Suresh G; Srinivasan H; Nanda S; Priyakumar UD Biochemistry; 2016 Jun; 55(24):3349-60. PubMed ID: 27249101 [TBL] [Abstract][Full Text] [Related]
29. Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches. Lin JC; Yoon J; Hyeon C; Thirumalai D Methods Enzymol; 2015; 553():235-58. PubMed ID: 25726468 [TBL] [Abstract][Full Text] [Related]
30. Atomic-scale characterization of conformational changes in the preQ₁ riboswitch aptamer upon ligand binding. Petrone PM; Dewhurst J; Tommasi R; Whitehead L; Pomerantz AK J Mol Graph Model; 2011 Sep; 30():179-85. PubMed ID: 21831681 [TBL] [Abstract][Full Text] [Related]
31. Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context. Marcano-Velázquez JG; Batey RT J Biol Chem; 2015 Feb; 290(7):4464-75. PubMed ID: 25550163 [TBL] [Abstract][Full Text] [Related]
32. Core requirements of the adenine riboswitch aptamer for ligand binding. Lemay JF; Lafontaine DA RNA; 2007 Mar; 13(3):339-50. PubMed ID: 17200422 [TBL] [Abstract][Full Text] [Related]
33. Direct observation of hierarchical folding in single riboswitch aptamers. Greenleaf WJ; Frieda KL; Foster DA; Woodside MT; Block SM Science; 2008 Feb; 319(5863):630-3. PubMed ID: 18174398 [TBL] [Abstract][Full Text] [Related]
34. Molecular dynamics simulation on the Thermosinus carboxydivorans pfl ZTP riboswitch by ligand binding. Yu-Nan H; Kang W; Yu S; Xiao-Jun X; Yan W; Xing-Ao L; Ting-Ting S Biochem Biophys Res Commun; 2022 Oct; 627():184-190. PubMed ID: 36044800 [TBL] [Abstract][Full Text] [Related]
35. Pairing interactions between nucleobases and ligands in aptamer:ligand complexes of riboswitches: crystal structure analysis, classification, optimal structures, and accurate interaction energies. Seelam PP; Mitra A; Sharma P RNA; 2019 Oct; 25(10):1274-1290. PubMed ID: 31315914 [TBL] [Abstract][Full Text] [Related]
36. Thermal adaptation of structural dynamics and regulatory function of adenine riboswitch. Wu L; Liu Z; Liu Y RNA Biol; 2021 Nov; 18(11):2007-2015. PubMed ID: 33573442 [TBL] [Abstract][Full Text] [Related]
37. Sequence elements distal to the ligand binding pocket modulate the efficiency of a synthetic riboswitch. Weigand JE; Gottstein-Schmidtke SR; Demolli S; Groher F; Duchardt-Ferner E; Wöhnert J; Suess B Chembiochem; 2014 Jul; 15(11):1627-37. PubMed ID: 24954073 [TBL] [Abstract][Full Text] [Related]
38. Force field dependence of riboswitch dynamics. Hanke CA; Gohlke H Methods Enzymol; 2015; 553():163-91. PubMed ID: 25726465 [TBL] [Abstract][Full Text] [Related]
39. Riboswitch Mechanisms for Regulation of P1 Helix Stability. Stagno JR; Wang YX Int J Mol Sci; 2024 Oct; 25(19):. PubMed ID: 39409011 [TBL] [Abstract][Full Text] [Related]
40. Pseudoknot preorganization of the preQ1 class I riboswitch. Santner T; Rieder U; Kreutz C; Micura R J Am Chem Soc; 2012 Jul; 134(29):11928-31. PubMed ID: 22775200 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]