These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 31574692)

  • 1. Steady-state and transient analysis of the Peskin-Odell-Oster Brownian ratchet model in the limit of large but finite diffusion.
    Kozyreff G; Ryckaert JP
    Phys Rev E; 2019 Aug; 100(2-1):022132. PubMed ID: 31574692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force-dependent diffusion coefficient of molecular Brownian ratchets.
    Uhl M; Seifert U
    Phys Rev E; 2018 Aug; 98(2-1):022402. PubMed ID: 30253613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force-velocity relation and load-sharing in the linear polymerization ratchet revisited: the effects of barrier diffusion.
    Yadav V; Gopalakrishnan M
    Eur Phys J E Soft Matter; 2022 Apr; 45(4):35. PubMed ID: 35416551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell motility driven by actin polymerization.
    Mogilner A; Oster G
    Biophys J; 1996 Dec; 71(6):3030-45. PubMed ID: 8968574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvable model of a many-filament Brownian ratchet.
    Wood AJ; Blythe RA; Evans MR
    Phys Rev E; 2019 Oct; 100(4-1):042122. PubMed ID: 31770955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady-state limiting currents at finite conical microelectrodes.
    Zoski CG; Mirkin MV
    Anal Chem; 2002 May; 74(9):1986-92. PubMed ID: 12033296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamically consistent treatment of the growth of a biopolymer in the presence of a smooth obstacle interaction potential.
    Motahari F; Carlsson AE
    Phys Rev E; 2019 Oct; 100(4-1):042409. PubMed ID: 31770877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A semi-flexible model prediction for the polymerization force exerted by a living F-actin filament on a fixed wall.
    Pierleoni C; Ciccotti G; Ryckaert JP
    J Chem Phys; 2015 Oct; 143(14):145101. PubMed ID: 26472399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-polymer Brownian motor: a simulation study.
    Downton MT; Zuckermann MJ; Craig EM; Plischke M; Linke H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011909. PubMed ID: 16486187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filament flexibility enhances power transduction of F-actin bundles.
    Perilli A; Pierleoni C; Ryckaert JP
    J Chem Phys; 2019 May; 150(18):185101. PubMed ID: 31091907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise-induced transport in a rough ratchet potential.
    Mondal D; Ghosh PK; Ray DS
    J Chem Phys; 2009 Feb; 130(7):074703. PubMed ID: 19239305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasi-steady-state analysis of coupled flashing ratchets.
    Levien E; Bressloff PC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042129. PubMed ID: 26565190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single particle Brownian motion with solid friction.
    Das P; Puri S; Schwartz M
    Eur Phys J E Soft Matter; 2017 Jun; 40(6):60. PubMed ID: 28589413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum suppression of ratchet rectification in a Brownian system driven by a biharmonic force.
    Kato A; Tanimura Y
    J Phys Chem B; 2013 Oct; 117(42):13132-44. PubMed ID: 23638887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous fluctuations in sliding motion of cytoskeletal filaments driven by molecular motors: model simulations.
    Imafuku Y; Mitarai N; Tawada K; Nakanishi H
    J Phys Chem B; 2008 Feb; 112(5):1487-93. PubMed ID: 18189378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-steady-state diffusion in two-dimensional periodic channels.
    Sivan M; Farago O
    Phys Rev E; 2019 Feb; 99(2-1):022141. PubMed ID: 30934312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renewal-reward process formulation of motor protein dynamics.
    Krishnan A; Epureanu BI
    Bull Math Biol; 2011 Oct; 73(10):2452-82. PubMed ID: 21327881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Granular Brownian ratchet model.
    Costantini G; Marini Bettolo Marconi U; Puglisi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061124. PubMed ID: 17677237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smoluchowski diffusion equation for active Brownian swimmers.
    Sevilla FJ; Sandoval M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052150. PubMed ID: 26066162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimal Brownian ratchet: an exactly solvable model.
    Lee Y; Allison A; Abbott D; Stanley HE
    Phys Rev Lett; 2003 Nov; 91(22):220601. PubMed ID: 14683223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.