These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31574706)

  • 1. Effect of stochastic processes on structure formation in nanocrystalline materials under severe plastic deformation.
    Khomenko A; Troshchenko D; Metlov L
    Phys Rev E; 2019 Aug; 100(2-1):022110. PubMed ID: 31574706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental observations of stress-driven grain boundary migration.
    Rupert TJ; Gianola DS; Gan Y; Hemker KJ
    Science; 2009 Dec; 326(5960):1686-90. PubMed ID: 20019286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free volumes in bulk nanocrystalline metals studied by the complementary techniques of positron annihilation and dilatometry.
    Würschum R; Oberdorfer B; Steyskal EM; Sprengel W; Puff W; Pikart P; Hugenschmidt C; Pippan R
    Physica B Condens Matter; 2012 Jul; 407(14):2670-2675. PubMed ID: 23471443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-analysis of grain boundary and triple junction transport in nanocrystalline Ni/Cu.
    Reda Chellali M; Balogh Z; Schmitz G
    Ultramicroscopy; 2013 Sep; 132():164-70. PubMed ID: 23294555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Observation of Sink-Dependent Defect Evolution in Nanocrystalline Iron under Irradiation.
    El-Atwani O; Nathaniel JE; Leff AC; Hattar K; Taheri ML
    Sci Rep; 2017 May; 7(1):1836. PubMed ID: 28500318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal defects responsible for mechanical behaviors of a WC-Co composite at room and high temperatures - a simulation study.
    Fang J; Liu X; Lu H; Liu X; Song X
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2019 Apr; 75(Pt 2):134-142. PubMed ID: 32830737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals.
    Kobler A; Kashiwar A; Hahn H; Kübel C
    Ultramicroscopy; 2013 May; 128():68-81. PubMed ID: 23524380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grain boundary-mediated plasticity in nanocrystalline nickel.
    Shan Z; Stach EA; Wiezorek JM; Knapp JA; Follstaedt DM; Mao SX
    Science; 2004 Jul; 305(5684):654-7. PubMed ID: 15286368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monotonic and cyclic plastic deformation behavior of nanocrystalline gold: atomistic simulations.
    Rajput A; Ghosal P; Kumar A; Paul SK
    J Mol Model; 2019 May; 25(6):153. PubMed ID: 31073697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dislocation-controlled formation and kinetics of grain boundary loops in two-dimensional crystals.
    Lavergne FA; Curran A; Aarts DGAL; Dullens RPA
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):6922-6927. PubMed ID: 29915026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries.
    Dey S; Mardinly J; Wang Y; Valdez JA; Holesinger TG; Uberuaga BP; Ditto JJ; Drazin JW; Castro RH
    Phys Chem Chem Phys; 2016 Jun; 18(25):16921-9. PubMed ID: 27282392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dislocation-twin boundary interactions induced nanocrystalline via SPD processing in bulk metals.
    Zhang F; Feng X; Yang Z; Kang J; Wang T
    Sci Rep; 2015 Mar; 5():8981. PubMed ID: 25757550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segregation stabilizes nanocrystalline bulk steel with near theoretical strength.
    Li Y; Raabe D; Herbig M; Choi PP; Goto S; Kostka A; Yarita H; Borchers C; Kirchheim R
    Phys Rev Lett; 2014 Sep; 113(10):106104. PubMed ID: 25238372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thick grain boundary induced strengthening in nanocrystalline Ni alloy.
    Ding J; Neffati D; Li Q; Su R; Li J; Xue S; Shang Z; Zhang Y; Wang H; Kulkarni Y; Zhang X
    Nanoscale; 2019 Dec; 11(48):23449-23458. PubMed ID: 31799538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual Beam In Situ Radiation Studies of Nanocrystalline Cu.
    Fan C; Shang Z; Niu T; Li J; Wang H; Zhang X
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31450669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compression deformation of WC: atomistic description of hard ceramic material.
    Feng Q; Song X; Liu X; Liang S; Wang H; Nie Z
    Nanotechnology; 2017 Nov; 28(47):475709. PubMed ID: 29016362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct observation of individual dislocation interaction processes with grain boundaries.
    Kondo S; Mitsuma T; Shibata N; Ikuhara Y
    Sci Adv; 2016 Nov; 2(11):e1501926. PubMed ID: 27847862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation.
    Yamakov V; Wolf D; Phillpot SR; Mukherjee AK; Gleiter H
    Nat Mater; 2004 Jan; 3(1):43-7. PubMed ID: 14704784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size effect on the deformation mechanisms of nanocrystalline platinum thin films.
    Shu X; Kong D; Lu Y; Long H; Sun S; Sha X; Zhou H; Chen Y; Mao S; Liu Y
    Sci Rep; 2017 Oct; 7(1):13264. PubMed ID: 29038576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of ceria nanorods and nanochains; the effect of dislocations, grain-boundaries and oriented attachment.
    Sayle TX; Inkson BJ; Karakoti A; Kumar A; Molinari M; Möbus G; Parker SC; Seal S; Sayle DC
    Nanoscale; 2011 Apr; 3(4):1823-37. PubMed ID: 21409243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.