These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31574730)

  • 1. Conservative phase-field method with a parallel and adaptive-mesh-refinement technique for interface tracking.
    Zhang A; Du J; Guo Z; Wang Q; Xiong S
    Phys Rev E; 2019 Aug; 100(2-1):023305. PubMed ID: 31574730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios.
    Fakhari A; Mitchell T; Leonardi C; Bolster D
    Phys Rev E; 2017 Nov; 96(5-1):053301. PubMed ID: 29347689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts.
    Zu YQ; He S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043301. PubMed ID: 23679542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.
    Liu H; Valocchi AJ; Zhang Y; Kang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of phase-field lattice Boltzmann models based on the conservative Allen-Cahn equation.
    Begmohammadi A; Haghani-Hassan-Abadi R; Fakhari A; Bolster D
    Phys Rev E; 2020 Aug; 102(2-1):023305. PubMed ID: 32942360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of two-phase liquid-vapor flows using a high-order compact finite-difference lattice Boltzmann method.
    Hejranfar K; Ezzatneshan E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053305. PubMed ID: 26651814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-field lattice Boltzmann model for interface tracking of a binary fluid system based on the Allen-Cahn equation.
    Zu YQ; Li AD; Wei H
    Phys Rev E; 2020 Nov; 102(5-1):053307. PubMed ID: 33327126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation.
    Ren F; Song B; Sukop MC; Hu H
    Phys Rev E; 2016 Aug; 94(2-1):023311. PubMed ID: 27627416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiphase flows of N immiscible incompressible fluids: Conservative Allen-Cahn equation and lattice Boltzmann equation method.
    Zheng L; Zheng S; Zhai Q
    Phys Rev E; 2020 Jan; 101(1-1):013305. PubMed ID: 32069624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-order weighted essentially nonoscillatory finite-difference formulation of the lattice Boltzmann method in generalized curvilinear coordinates.
    Hejranfar K; Saadat MH; Taheri S
    Phys Rev E; 2017 Feb; 95(2-1):023314. PubMed ID: 28297984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-field method based on discrete unified gas-kinetic scheme for large-density-ratio two-phase flows.
    Yang Z; Zhong C; Zhuo C
    Phys Rev E; 2019 Apr; 99(4-1):043302. PubMed ID: 31108650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows.
    Hejranfar K; Hajihassanpour M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013301. PubMed ID: 25679733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-order lattice-Boltzmann model for the Cahn-Hilliard equation.
    Zhang C; Guo Z; Liang H
    Phys Rev E; 2019 Apr; 99(4-1):043310. PubMed ID: 31108671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Allen-Cahn-based lattice Boltzmann model for incompressible two-phase flows: The reduction of numerical dispersion.
    Hu Y; Li D; Jin L; Niu X; Shu S
    Phys Rev E; 2019 Feb; 99(2-1):023302. PubMed ID: 30934363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass conservative lattice Boltzmann scheme for a three-dimensional diffuse interface model with Peng-Robinson equation of state.
    Qiao Z; Yang X; Zhang Y
    Phys Rev E; 2018 Aug; 98(2-1):023306. PubMed ID: 30253477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conservative phase-field lattice Boltzmann model for interface tracking equation.
    Geier M; Fakhari A; Lee T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):063309. PubMed ID: 26172824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice Boltzmann equation method for the Cahn-Hilliard equation.
    Zheng L; Zheng S; Zhai Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013309. PubMed ID: 25679741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local hybrid Allen-Cahn model in phase-field lattice Boltzmann method for incompressible two-phase flow.
    Kang DH; Yun TS
    Phys Rev E; 2022 Apr; 105(4-2):045307. PubMed ID: 35590596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consistent and conservative phase-field-based lattice Boltzmann method for incompressible two-phase flows.
    Zhan C; Chai Z; Shi B
    Phys Rev E; 2022 Aug; 106(2-2):025319. PubMed ID: 36109994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of the lattice Boltzmann models for Allen-Cahn and Cahn-Hilliard equations.
    Wang HL; Chai ZH; Shi BC; Liang H
    Phys Rev E; 2016 Sep; 94(3-1):033304. PubMed ID: 27739765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.