These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31574949)

  • 1. Fabrication and Characterization of Flexible Thermoelectric Generators Using Micromachining and Electroplating Techniques.
    Lee WL; Shih PJ; Hsu CC; Dai CL
    Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31574949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and characterization of CMOS-MEMS thermoelectric micro generators.
    Kao PH; Shih PJ; Dai CL; Liu MC
    Sensors (Basel); 2010; 10(2):1315-25. PubMed ID: 22205869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy harvesting thermoelectric generators manufactured using the complementary metal oxide semiconductor process.
    Yang MZ; Wu CC; Dai CL; Tsai WJ
    Sensors (Basel); 2013 Feb; 13(2):2359-67. PubMed ID: 23396193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoelectric Energy Micro Harvesters with Temperature Sensors Manufactured Utilizing the CMOS-MEMS Technique.
    Shen YX; Tsai YC; Lee CY; Wu CC; Dai CL
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance Ag-Se-Based n-Type Printed Thermoelectric Materials for High Power Density Folded Generators.
    Mallick MM; Rösch AG; Franke L; Ahmed S; Gall A; Geßwein H; Aghassi J; Lemmer U
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19655-19663. PubMed ID: 32267668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Transparent Paper-Based Flexible Thermoelectric Generator for Wearable Energy Harvester Using Modified Distributor Printing Technology.
    Zhao X; Han W; Zhao C; Wang S; Kong F; Ji X; Li Z; Shen X
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10301-10309. PubMed ID: 30773879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room-Temperature Welding of Silver Telluride Nanowires for High-Performance Thermoelectric Film.
    Zeng X; Ren L; Xie J; Mao D; Wang M; Zeng X; Du G; Sun R; Xu JB; Wong CP
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37892-37900. PubMed ID: 31560511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High performance n-type Ag
    Ding Y; Qiu Y; Cai K; Yao Q; Chen S; Chen L; He J
    Nat Commun; 2019 Feb; 10(1):841. PubMed ID: 30783113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Printed Flexible μ-Thermoelectric Device Based on Hybrid Bi
    Pires AL; Cruz IF; Silva J; Oliveira GNP; Ferreira-Teixeira S; Lopes AML; Araújo JP; Fonseca J; Pereira C; Pereira AM
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8969-8981. PubMed ID: 30693751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoelectric Generator Using Polyaniline-Coated Sb
    Kim M; Park D; Kim J
    Polymers (Basel); 2021 May; 13(9):. PubMed ID: 34065076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screen-Printed Flexible Thermoelectric Device Based on Hybrid Silver Selenide/PVP Composite Films.
    Liu D; Zhao Y; Yan Z; Zhang Z; Zhang Y; Shi P; Xue C
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and Thermoelectric Characterization of Transition Metal Silicide-Based Composite Thermocouples.
    Yakaboylu GA; Pillai RC; Sabolsky K; Sabolsky EM
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance n-Type Carbon Nanotubes Doped by Oxidation of Neighboring Sb
    Kim S; Mo JH; Jang KS
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43778-43784. PubMed ID: 32870650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoelectric Mixed Thick-/Thin Film Microgenerators Based on Constantan/Silver.
    Gierczak M; Prażmowska-Czajka J; Dziedzic A
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29329203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance Paper-Based Thermoelectric Generator from Cu
    Das S; Mondal BP; Ranjan P; Datta A
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56022-56033. PubMed ID: 38010192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoelectric characterization of flexible micro-thermoelectric generators.
    Beretta D; Massetti M; Lanzani G; Caironi M
    Rev Sci Instrum; 2017 Jan; 88(1):015103. PubMed ID: 28147642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Approach toward the Realization of a Through-Thickness Glass Fiber/Epoxy Thermoelectric Generator.
    Karalis G; Mytafides CK; Tzounis L; Paipetis AS; Barkoula NM
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33922849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoengineering Approach toward High Power Factor Ag
    Liu Y; Li Y; Wu M; Lu Y; Wang Z; Wei P; Zhao W; Cai K
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36587-36593. PubMed ID: 37470451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Performance μ-Thermoelectric Device Based on Bi
    Vieira EMF; Pires AL; Silva JPB; Magalhães VH; Grilo J; Brito FP; Silva MF; Pereira AM; Goncalves LM
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38946-38954. PubMed ID: 31560510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of Bismuth Telluride Films with High Thermoelectric Power Factor.
    Na J; Kim Y; Park T; Park C; Kim E
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32392-32400. PubMed ID: 27801559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.