These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31574999)

  • 1. 3D Bio-Printing of CS/Gel/HA/Gr Hybrid Osteochondral Scaffolds.
    Hu X; Man Y; Li W; Li L; Xu J; Parungao R; Wang Y; Zheng S; Nie Y; Liu T; Song K
    Polymers (Basel); 2019 Sep; 11(10):. PubMed ID: 31574999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomimetic cartilage gradient hybrid scaffold for functional tissue engineering of cartilage.
    Hu X; Li W; Li L; Lu Y; Wang Y; Parungao R; Zheng S; Liu T; Nie Y; Wang H; Song K
    Tissue Cell; 2019 Jun; 58():84-92. PubMed ID: 31133251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printing silk-gelatin-propanediol scaffold with enhanced osteogenesis properties through p-Smad1/5/8 activated Runx2 pathway.
    Liu C; Bai Z; Lin J; Jiang K; Huang S; Zheng W; Chen R; Xiang Y; Wang X; Liu L
    J Biomater Sci Polym Ed; 2021 Aug; 32(12):1515-1529. PubMed ID: 33830881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-Free Bilayered Porous Scaffolds for Osteochondral Regeneration Fabricated by Continuous 3D-Printing Using Nascent Physical Hydrogel as Ink.
    Gao J; Ding X; Yu X; Chen X; Zhang X; Cui S; Shi J; Chen J; Yu L; Chen S; Ding J
    Adv Healthc Mater; 2021 Feb; 10(3):e2001404. PubMed ID: 33225617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite.
    Xiao H; Huang W; Xiong K; Ruan S; Yuan C; Mo G; Tian R; Zhou S; She R; Ye P; Liu B; Deng J
    Int J Nanomedicine; 2019; 14():2011-2027. PubMed ID: 30962685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Preparation and
    Li J; Zhang X; Guo Q; Zhang J; Cao Y; Zhang X; Huang J; Wang Q; Liu X; Hao C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Apr; 32(4):434-440. PubMed ID: 29806301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and optimisation of hydroxyapatite-polyethylene glycol diacrylate hydrogel inks for 3D printing of bone tissue engineered scaffolds.
    Rajabi M; Cabral JD; Saunderson S; Gould M; Ali MA
    Biomed Mater; 2023 Sep; 18(6):. PubMed ID: 37699400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Printing Self-Healing Dynamic/Photocrosslinking Gelatin-Hyaluronic Acid Double-Network Hydrogel for Tissue Engineering.
    Wang Y; Chen Y; Zheng J; Liu L; Zhang Q
    ACS Omega; 2022 Apr; 7(14):12076-12088. PubMed ID: 35449926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current advancements in bio-ink technology for cartilage and bone tissue engineering.
    Badhe RV; Chatterjee A; Bijukumar D; Mathew MT
    Bone; 2023 Jun; 171():116746. PubMed ID: 36965655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution 3D printing of xanthan gum/nanocellulose bio-inks.
    Baniasadi H; Kimiaei E; Polez RT; Ajdary R; Rojas OJ; Österberg M; Seppälä J
    Int J Biol Macromol; 2022 Jun; 209(Pt B):2020-2031. PubMed ID: 35500781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Dopamine modified and cartilage derived morphogenetic protein 1 laden polycaprolactone-hydroxyapatite composite scaffolds fabricated by three-dimensional printing improve chondrogenic differentiation of human bone marrow mesenchymal stem cells].
    Xu Y; Wei B; Zhou J; Yao Q; Wang L; Na J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Feb; 32(2):215-222. PubMed ID: 29806415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lyophilized Scaffolds Fabricated from 3D-Printed Photocurable Natural Hydrogel for Cartilage Regeneration.
    Xia H; Zhao D; Zhu H; Hua Y; Xiao K; Xu Y; Liu Y; Chen W; Liu Y; Zhang W; Liu W; Tang S; Cao Y; Wang X; Chen HH; Zhou G
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31704-31715. PubMed ID: 30157627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Osteogenesis effect of dynamic mechanical loading on MC3T3-E1 cells in three-dimensional printing biomimetic composite scaffolds].
    Song X; Li H; Li R; Yuan Q; Liu Y; Cheng W; Zhang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Apr; 32(4):448-456. PubMed ID: 29806303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering.
    Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG
    Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits.
    Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM
    Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan/gelatin porous scaffolds containing hyaluronic acid and heparan sulfate for neural tissue engineering.
    Guan S; Zhang XL; Lin XM; Liu TQ; Ma XH; Cui ZF
    J Biomater Sci Polym Ed; 2013; 24(8):999-1014. PubMed ID: 23647254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural stem cell proliferation and differentiation in the conductive PEDOT-HA/Cs/Gel scaffold for neural tissue engineering.
    Wang S; Guan S; Xu J; Li W; Ge D; Sun C; Liu T; Ma X
    Biomater Sci; 2017 Sep; 5(10):2024-2034. PubMed ID: 28894864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.