BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 31575008)

  • 1. Glutathione and Nitric Oxide: Key Team Players in Use and Disuse of Skeletal Muscle.
    Baldelli S; Ciccarone F; Limongi D; Checconi P; Palamara AT; Ciriolo MR
    Nutrients; 2019 Sep; 11(10):. PubMed ID: 31575008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox homeostasis, oxidative stress and disuse muscle atrophy.
    Pellegrino MA; Desaphy JF; Brocca L; Pierno S; Camerino DC; Bottinelli R
    J Physiol; 2011 May; 589(Pt 9):2147-60. PubMed ID: 21320887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox Control of Proteolysis During Inactivity-Induced Skeletal Muscle Atrophy.
    Powers SK; Ozdemir M; Hyatt H
    Antioxid Redox Signal; 2020 Sep; 33(8):559-569. PubMed ID: 31941357
    [No Abstract]   [Full Text] [Related]  

  • 4. Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse.
    Salanova M; Schiffl G; Gutsmann M; Felsenberg D; Furlan S; Volpe P; Clarke A; Blottner D
    Redox Biol; 2013; 1(1):514-26. PubMed ID: 24251120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stress and disuse muscle atrophy: cause or consequence?
    Powers SK; Smuder AJ; Judge AR
    Curr Opin Clin Nutr Metab Care; 2012 May; 15(3):240-5. PubMed ID: 22466926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress and skeletal muscle dysfunction with aging.
    Aoi W; Sakuma K
    Curr Aging Sci; 2011 Jul; 4(2):101-9. PubMed ID: 21235498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease.
    Bohnert KR; McMillan JD; Kumar A
    J Cell Physiol; 2018 Jan; 233(1):67-78. PubMed ID: 28177127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic links between oxidative stress and disuse muscle atrophy.
    Powers SK; Smuder AJ; Criswell DS
    Antioxid Redox Signal; 2011 Nov; 15(9):2519-28. PubMed ID: 21457104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress, chronic disease, and muscle wasting.
    Moylan JS; Reid MB
    Muscle Nerve; 2007 Apr; 35(4):411-29. PubMed ID: 17266144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational insights into the role of glutathione in oxidative stress.
    Presnell CE; Bhatti G; Numan LS; Lerche M; Alkhateeb SK; Ghalib M; Shammaa M; Kavdia M
    Curr Neurovasc Res; 2013 May; 10(2):185-94. PubMed ID: 23469953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Markers of oxidative stress in the skeletal muscle of patients on haemodialysis.
    Crowe AV; McArdle A; McArdle F; Pattwell DM; Bell GM; Kemp GJ; Bone JM; Griffiths RD; Jackson MJ
    Nephrol Dial Transplant; 2007 Apr; 22(4):1177-83. PubMed ID: 17213227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron injections in mice increase skeletal muscle iron content, induce oxidative stress and reduce exercise performance.
    Reardon TF; Allen DG
    Exp Physiol; 2009 Jun; 94(6):720-30. PubMed ID: 19201785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond atrophy: redox mechanisms of muscle dysfunction in chronic inflammatory disease.
    Reid MB; Moylan JS
    J Physiol; 2011 May; 589(Pt 9):2171-9. PubMed ID: 21320886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondria-cytokine crosstalk following skeletal muscle injury and disuse: a mini-review.
    Qualls AE; Southern WM; Call JA
    Am J Physiol Cell Physiol; 2021 May; 320(5):C681-C688. PubMed ID: 33566726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle wasting occurs in adult rats under chronic treatment with paracetamol when glutathione-dependent detoxification is highly activated.
    Mast C; Joly C; Savary-Auzeloux I; Remond D; Dardevet D; Papet I
    J Physiol Pharmacol; 2014 Oct; 65(5):623-31. PubMed ID: 25371521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Neuronal NO-synthase as the molecular guard of myofiber stability. NO-dependent signaling pathways in the active and unloaded muscle].
    Shenkman BS; Lomonosova IuN; Nemirovskaia TL
    Usp Fiziol Nauk; 2014; 45(2):37-48. PubMed ID: 25707262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox regulation of skeletal muscle.
    Jackson MJ
    IUBMB Life; 2008 Aug; 60(8):497-501. PubMed ID: 18629903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular and molecular events controlling skeletal muscle mass in response to altered use.
    Favier FB; Benoit H; Freyssenet D
    Pflugers Arch; 2008 Jun; 456(3):587-600. PubMed ID: 18193272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of disuse muscle atrophy: role of oxidative stress.
    Powers SK; Kavazis AN; DeRuisseau KC
    Am J Physiol Regul Integr Comp Physiol; 2005 Feb; 288(2):R337-44. PubMed ID: 15637170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRP1/GS-X pump ATPase expression: is this the explanation for the cytoprotection of the heart against oxidative stress-induced redox imbalance in comparison to skeletal muscle cells?
    Krause MS; Oliveira LP; Silveira EM; Vianna DR; Rossato JS; Almeida BS; Rodrigues MF; Fernandes AJ; Costa JA; Curi R; de Bittencourt PI
    Cell Biochem Funct; 2007; 25(1):23-32. PubMed ID: 16868918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.