These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. An intelligent identification and classification system for malicious uniform resource locators (URLs). Abu Al-Haija Q; Al-Fayoumi M Neural Comput Appl; 2023 Apr; ():1-17. PubMed ID: 37362563 [TBL] [Abstract][Full Text] [Related]
4. A hybrid DNN-LSTM model for detecting phishing URLs. Ozcan A; Catal C; Donmez E; Senturk B Neural Comput Appl; 2023; 35(7):4957-4973. PubMed ID: 34393380 [TBL] [Abstract][Full Text] [Related]
5. An intelligent cyber security phishing detection system using deep learning techniques. Mughaid A; AlZu'bi S; Hnaif A; Taamneh S; Alnajjar A; Elsoud EA Cluster Comput; 2022; 25(6):3819-3828. PubMed ID: 35602317 [TBL] [Abstract][Full Text] [Related]
6. Phishing Website Detection Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning. Yang R; Zheng K; Wu B; Wu C; Wang X Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960375 [TBL] [Abstract][Full Text] [Related]
7. A Deep Learning-Based Innovative Technique for Phishing Detection in Modern Security with Uniform Resource Locators. Aldakheel EA; Zakariah M; Gashgari GA; Almarshad FA; Alzahrani AIA Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177607 [TBL] [Abstract][Full Text] [Related]
8. Cyber Threat Intelligence-Based Malicious URL Detection Model Using Ensemble Learning. Ghaleb FA; Alsaedi M; Saeed F; Ahmad J; Alasli M Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591061 [TBL] [Abstract][Full Text] [Related]
9. Phishing URLs Detection Using Sequential and Parallel ML Techniques: Comparative Analysis. Nagy N; Aljabri M; Shaahid A; Ahmed AA; Alnasser F; Almakramy L; Alhadab M; Alfaddagh S Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050527 [TBL] [Abstract][Full Text] [Related]
10. An Assessment of Lexical, Network, and Content-Based Features for Detecting Malicious URLs Using Machine Learning and Deep Learning Models. Aljabri M; Alhaidari F; Mohammad RMA; Samiha Mirza ; Alhamed DH; Altamimi HS; Chrouf SMB Comput Intell Neurosci; 2022; 2022():3241216. PubMed ID: 36059391 [TBL] [Abstract][Full Text] [Related]
11. Applications of deep learning for phishing detection: a systematic literature review. Catal C; Giray G; Tekinerdogan B; Kumar S; Shukla S Knowl Inf Syst; 2022; 64(6):1457-1500. PubMed ID: 35645443 [TBL] [Abstract][Full Text] [Related]
12. A comprehensive survey of AI-enabled phishing attacks detection techniques. Basit A; Zafar M; Liu X; Javed AR; Jalil Z; Kifayat K Telecommun Syst; 2021; 76(1):139-154. PubMed ID: 33110340 [TBL] [Abstract][Full Text] [Related]
13. An ensemble classification method based on machine learning models for malicious Uniform Resource Locators (URL). Sankaranarayanan S; Sivachandran AT; Mohd Khairuddin AS; Hasikin K; Wahab Sait AR PLoS One; 2024; 19(5):e0302196. PubMed ID: 38820435 [TBL] [Abstract][Full Text] [Related]
18. Improving the phishing website detection using empirical analysis of Function Tree and its variants. Balogun AO; Adewole KS; Raheem MO; Akande ON; Usman-Hamza FE; Mabayoje MA; Akintola AG; Asaju-Gbolagade AW; Jimoh MK; Jimoh RG; Adeyemo VE Heliyon; 2021 Jul; 7(7):e07437. PubMed ID: 34278030 [TBL] [Abstract][Full Text] [Related]
19. Towards a Multi-Layered Phishing Detection. Rendall K; Nisioti A; Mylonas A Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823675 [TBL] [Abstract][Full Text] [Related]
20. Building an Effective Classifier for Phishing Web Pages Detection: A Quantum-Inspired Biomimetic Paradigm Suitable for Big Data Analytics of Cyber Attacks. Darwish SM; Farhan DA; Elzoghabi AA Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37218783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]