These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 31575038)

  • 1. A Deep-Learning-Driven Light-Weight Phishing Detection Sensor.
    Wei B; Hamad RA; Yang L; He X; Wang H; Gao B; Woo WL
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31575038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting phishing websites using machine learning technique.
    Dutta AK
    PLoS One; 2021; 16(10):e0258361. PubMed ID: 34634081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An intelligent identification and classification system for malicious uniform resource locators (URLs).
    Abu Al-Haija Q; Al-Fayoumi M
    Neural Comput Appl; 2023 Apr; ():1-17. PubMed ID: 37362563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid DNN-LSTM model for detecting phishing URLs.
    Ozcan A; Catal C; Donmez E; Senturk B
    Neural Comput Appl; 2023; 35(7):4957-4973. PubMed ID: 34393380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An intelligent cyber security phishing detection system using deep learning techniques.
    Mughaid A; AlZu'bi S; Hnaif A; Taamneh S; Alnajjar A; Elsoud EA
    Cluster Comput; 2022; 25(6):3819-3828. PubMed ID: 35602317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phishing Website Detection Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning.
    Yang R; Zheng K; Wu B; Wu C; Wang X
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Deep Learning-Based Innovative Technique for Phishing Detection in Modern Security with Uniform Resource Locators.
    Aldakheel EA; Zakariah M; Gashgari GA; Almarshad FA; Alzahrani AIA
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyber Threat Intelligence-Based Malicious URL Detection Model Using Ensemble Learning.
    Ghaleb FA; Alsaedi M; Saeed F; Ahmad J; Alasli M
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phishing URLs Detection Using Sequential and Parallel ML Techniques: Comparative Analysis.
    Nagy N; Aljabri M; Shaahid A; Ahmed AA; Alnasser F; Almakramy L; Alhadab M; Alfaddagh S
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Assessment of Lexical, Network, and Content-Based Features for Detecting Malicious URLs Using Machine Learning and Deep Learning Models.
    Aljabri M; Alhaidari F; Mohammad RMA; Samiha Mirza ; Alhamed DH; Altamimi HS; Chrouf SMB
    Comput Intell Neurosci; 2022; 2022():3241216. PubMed ID: 36059391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of deep learning for phishing detection: a systematic literature review.
    Catal C; Giray G; Tekinerdogan B; Kumar S; Shukla S
    Knowl Inf Syst; 2022; 64(6):1457-1500. PubMed ID: 35645443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive survey of AI-enabled phishing attacks detection techniques.
    Basit A; Zafar M; Liu X; Javed AR; Jalil Z; Kifayat K
    Telecommun Syst; 2021; 76(1):139-154. PubMed ID: 33110340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ensemble classification method based on machine learning models for malicious Uniform Resource Locators (URL).
    Sankaranarayanan S; Sivachandran AT; Mohd Khairuddin AS; Hasikin K; Wahab Sait AR
    PLoS One; 2024; 19(5):e0302196. PubMed ID: 38820435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Hybrid Approach for Alluring Ads Phishing Attack Detection Using Machine Learning.
    Shaukat MW; Amin R; Muslam MMA; Alshehri AH; Xie J
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DSmishSMS-A System to Detect Smishing SMS.
    Mishra S; Soni D
    Neural Comput Appl; 2023; 35(7):4975-4992. PubMed ID: 34341626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. APuML: An Efficient Approach to Detect Mobile Phishing Webpages using Machine Learning.
    Jain AK; Debnath N; Jain AK
    Wirel Pers Commun; 2022; 125(4):3227-3248. PubMed ID: 35529800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life-long phishing attack detection using continual learning.
    Ejaz A; Mian AN; Manzoor S
    Sci Rep; 2023 Jul; 13(1):11488. PubMed ID: 37460588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the phishing website detection using empirical analysis of Function Tree and its variants.
    Balogun AO; Adewole KS; Raheem MO; Akande ON; Usman-Hamza FE; Mabayoje MA; Akintola AG; Asaju-Gbolagade AW; Jimoh MK; Jimoh RG; Adeyemo VE
    Heliyon; 2021 Jul; 7(7):e07437. PubMed ID: 34278030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards a Multi-Layered Phishing Detection.
    Rendall K; Nisioti A; Mylonas A
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Building an Effective Classifier for Phishing Web Pages Detection: A Quantum-Inspired Biomimetic Paradigm Suitable for Big Data Analytics of Cyber Attacks.
    Darwish SM; Farhan DA; Elzoghabi AA
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37218783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.