These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

565 related articles for article (PubMed ID: 31575046)

  • 1. Combining Soft Polysilazanes with Melt-Shear Organization of Core-Shell Particles: On the Road to Polymer-Templated Porous Ceramics.
    Boehm AK; Ionescu E; Koch M; Gallei M
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31575046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluoropolymer-Containing Opals and Inverse Opals by Melt-Shear Organization.
    Kredel J; Dietz C; Gallei M
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30658515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous Mixed-Metal Oxide Li-Ion Battery Electrodes by Shear-Induced Co-assembly of Precursors and Tailored Polymer Particles.
    Boehm AK; Husmann S; Besch M; Janka O; Presser V; Gallei M
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61166-61179. PubMed ID: 34913692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-Induced Coloration and Interface Shell Cross-Linking for the Preparation of Polymer-Based Opal Films.
    Schlander AM; Gallei M
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44764-44773. PubMed ID: 31674752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Polymer Opals and Porous Materials by Shear-Induced Assembly of Tailor-Made Particles.
    Gallei M
    Macromol Rapid Commun; 2018 Feb; 39(4):. PubMed ID: 29210135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-initiated anionic polymerization of [1]silaferrocenophanes for the preparation of colloidal preceramic materials.
    Elbert J; Didzoleit H; Fasel C; Ionescu E; Riedel R; Stühn B; Gallei M
    Macromol Rapid Commun; 2015 Apr; 36(7):597-603. PubMed ID: 25504616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferrocene-Containing Inverse Opals by Melt-Shear Organization of Core/Shell Particles.
    Winter T; Su X; Hatton TA; Gallei M
    Macromol Rapid Commun; 2018 Nov; 39(22):e1800428. PubMed ID: 30027570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free-Standing and Self-Crosslinkable Hybrid Films by Core-Shell Particle Design and Processing.
    Vowinkel S; Paul S; Gutmann T; Gallei M
    Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29140279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer.
    Ye C; Chen A; Colombo P; Martinez C
    J R Soc Interface; 2010 Aug; 7 Suppl 4(Suppl 4):S461-73. PubMed ID: 20484226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilizing stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials.
    Schäfer CG; Lederle C; Zentel K; Stühn B; Gallei M
    Macromol Rapid Commun; 2014 Nov; 35(21):1852-60. PubMed ID: 25243892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel processing approach for free-standing porous non-oxide ceramic supports from polycarbosilane and polysilazane precursors.
    Konegger T; Patidar R; Bordia RK
    J Eur Ceram Soc; 2015 Sep; 35(9):2679-2683. PubMed ID: 26339126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and Ceramic Conversion of a New Organodecaborane Preceramic Polymer with High-Ceramic-Yield.
    Li J; Cao K; Li J; Liu M; Zhang S; Yang J; Zhang Z; Li B
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30261601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of monodispersed macroporous core-shell molecularly imprinted particles and their application in the determination of 2,4-dichlorophenoxyacetic acid.
    Liu Y; He Y; Jin Y; Huang Y; Liu G; Zhao R
    J Chromatogr A; 2014 Jan; 1323():11-7. PubMed ID: 24300087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological evaluation of preceramic organosilicon polymers for various healthcare and biomedical engineering applications: A review.
    Francis A
    J Biomed Mater Res B Appl Biomater; 2021 May; 109(5):744-764. PubMed ID: 33075186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal and micro-carbon spheres derived from low-temperature polymerization reactions.
    Moreno-Castilla C
    Adv Colloid Interface Sci; 2016 Oct; 236():113-41. PubMed ID: 27530712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured hybrid materials from aqueous polymer dispersions.
    Castelvetro V; De Vita C
    Adv Colloid Interface Sci; 2004 May; 108-109():167-85. PubMed ID: 15072940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review.
    Bernardo E; Fiocco L; Parcianello G; Storti E; Colombo P
    Materials (Basel); 2014 Mar; 7(3):1927-1956. PubMed ID: 28788548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility and bioactivity of porous polymer-derived Ca-Mg silicate ceramics.
    Fiocco L; Li S; Stevens MM; Bernardo E; Jones JR
    Acta Biomater; 2017 Mar; 50():56-67. PubMed ID: 28017870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong influence of polymer architecture on the microstructural evolution of hafnium-alkoxide-modified silazanes upon ceramization.
    Papendorf B; Nonnenmacher K; Ionescu E; Kleebe HJ; Riedel R
    Small; 2011 Apr; 7(7):970-8. PubMed ID: 21381195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomorphic Ceramics: Synthesis and Characterization of Preceramic Polymer-Modified Melanin.
    Parvulescu MJS; Martin KL; Mogilevsky P; Patel TA; Street DP; Gupta MK; Hung CS; Dickerson MB
    ACS Biomater Sci Eng; 2021 Jul; 7(7):3103-3113. PubMed ID: 34100582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.