These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31575136)

  • 1. Synchronization-based reconstruction of electromechanical wave dynamics in elastic excitable media.
    Lebert J; Christoph J
    Chaos; 2019 Sep; 29(9):093117. PubMed ID: 31575136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse mechano-electrical reconstruction of cardiac excitation wave patterns from mechanical deformation using deep learning.
    Christoph J; Lebert J
    Chaos; 2020 Dec; 30(12):123134. PubMed ID: 33380038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative tension of scroll wave filaments and turbulence in three-dimensional excitable media and application in cardiac dynamics.
    Alonso S; Bär M; Panfilov AV
    Bull Math Biol; 2013 Aug; 75(8):1351-76. PubMed ID: 22829178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromechanical vortex filaments during cardiac fibrillation.
    Christoph J; Chebbok M; Richter C; Schröder-Schetelig J; Bittihn P; Stein S; Uzelac I; Fenton FH; Hasenfuß G; Gilmour RF; Luther S
    Nature; 2018 Mar; 555(7698):667-672. PubMed ID: 29466325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of three-dimensional scroll waves in excitable media from two-dimensional observations using deep neural networks.
    Lebert J; Mittal M; Christoph J
    Phys Rev E; 2023 Jan; 107(1-1):014221. PubMed ID: 36797900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias.
    Nash MP; Panfilov AV
    Prog Biophys Mol Biol; 2004; 85(2-3):501-22. PubMed ID: 15142759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative filament tension in the Luo-Rudy model of cardiac tissue.
    Alonso S; Panfilov AV
    Chaos; 2007 Mar; 17(1):015102. PubMed ID: 17411259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drift of Scroll Wave Filaments in an Anisotropic Model of the Left Ventricle of the Human Heart.
    Pravdin S; Dierckx H; Markhasin VS; Panfilov AV
    Biomed Res Int; 2015; 2015():389830. PubMed ID: 26539486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Termination of pinned vortices by high-frequency wave trains in heartlike excitable media with anisotropic fiber orientation.
    Hörning M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031912. PubMed ID: 23030949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effective control of excitable waves in 2D cardiac excitable media].
    Li L; Liu L; Zhang G; Wang G; Qu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1104-7. PubMed ID: 16422076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico thermal control of spiral wave dynamics in excitable cardiac tissue.
    Majumder R
    Biophys Rep (N Y); 2024 Sep; 4(3):100170. PubMed ID: 38960373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects.
    Cherubini C; Filippi S; Nardinocchi P; Teresi L
    Prog Biophys Mol Biol; 2008; 97(2-3):562-73. PubMed ID: 18353430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of cardiac alternans in an electromechanical model of cardiac tissue.
    Hazim A; Belhamadia Y; Dubljevic S
    Comput Biol Med; 2015 Aug; 63():108-17. PubMed ID: 26069933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wave block formation in homogeneous excitable media following premature excitations: dependence on restitution relations.
    Comtois P; Vinet A; Nattel S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031919. PubMed ID: 16241494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scroll-wave dynamics in human cardiac tissue: lessons from a mathematical model with inhomogeneities and fiber architecture.
    Majumder R; Nayak AR; Pandit R
    PLoS One; 2011 Apr; 6(4):e18052. PubMed ID: 21483682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanding scroll rings and negative tension turbulence in a model of excitable media.
    Alonso S; Kähler R; Mikhailov AS; Sagués F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056201. PubMed ID: 15600722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing three-dimensional reentrant cardiac electrical wave dynamics using data assimilation.
    Hoffman MJ; LaVigne NS; Scorse ST; Fenton FH; Cherry EM
    Chaos; 2016 Jan; 26(1):013107. PubMed ID: 26826859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spiral waves are stable in discrete element models of two-dimensional homogeneous excitable media.
    Feldman AB; Chernyak YB; Cohen RJ
    Int J Bifurcat Chaos; 1998 Jun; 8(6):1153-61. PubMed ID: 11542661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamics of vortex-like reentry wave filaments in three-dimensional computer models.
    Ashihara T; Namba T; Ito M; Kinoshita M; Nakazawa K
    J Electrocardiol; 1999; 32 Suppl():129-38. PubMed ID: 10688316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear physics of electrical wave propagation in the heart: a review.
    Alonso S; Bär M; Echebarria B
    Rep Prog Phys; 2016 Sep; 79(9):096601. PubMed ID: 27517161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.