These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 31575154)
21. Coexisting hidden and self-excited attractors in a locally active memristor-based circuit. Dong Y; Wang G; Iu HH; Chen G; Chen L Chaos; 2020 Oct; 30(10):103123. PubMed ID: 33138451 [TBL] [Abstract][Full Text] [Related]
22. A general multiscroll Lorenz system family and its realization via digital signal processors. Yu S; Lü J; Tang WK; Chen G Chaos; 2006 Sep; 16(3):033126. PubMed ID: 17014231 [TBL] [Abstract][Full Text] [Related]
24. Connecting curve: A new tool for locating hidden attractors. Guan X; Xie Y Chaos; 2021 Nov; 31(11):113143. PubMed ID: 34881594 [TBL] [Abstract][Full Text] [Related]
25. Coexisting multiple attractors and riddled basins of a memristive system. Wang G; Yuan F; Chen G; Zhang Y Chaos; 2018 Jan; 28(1):013125. PubMed ID: 29390635 [TBL] [Abstract][Full Text] [Related]
26. Electronic implementation dataset to monoparametric control the number of scrolls generated. Echenausía-Monroy JL; García-López JH; Jaimes-Reátegui R; Huerta-Cuellar G Data Brief; 2020 Aug; 31():105992. PubMed ID: 32695858 [TBL] [Abstract][Full Text] [Related]
27. Multi-scroll attractor and its broken coexisting attractors in cyclic memristive neural network. Lai Q; Chen Y Chaos; 2023 Aug; 33(8):. PubMed ID: 38060791 [TBL] [Abstract][Full Text] [Related]
28. A novel non-equilibrium memristor-based system with multi-wing attractors and multiple transient transitions. Gu S; Peng Q; Leng X; Du B Chaos; 2021 Mar; 31(3):033105. PubMed ID: 33810728 [TBL] [Abstract][Full Text] [Related]
29. Comments on "Coexistence of hidden chaotic attractors in a novel no-equilibrium system" (Nonlinear Dyn, doi:10.1007/s11071-016-3170-x). Petráš I Nonlinear Dyn; 2017; 90(1):749-754. PubMed ID: 29187777 [TBL] [Abstract][Full Text] [Related]
30. Design and Analysis of Multiscroll Memristive Hopfield Neural Network With Adjustable Memductance and Application to Image Encryption. Lai Q; Wan Z; Zhang H; Chen G IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):7824-7837. PubMed ID: 35143405 [TBL] [Abstract][Full Text] [Related]
31. n-scroll chaotic attractors from a first-order time-delay differential equation. Yalçin ME; Ozoguz S Chaos; 2007 Sep; 17(3):033112. PubMed ID: 17902994 [TBL] [Abstract][Full Text] [Related]
32. Constructing multi-butterfly attractors based on Sprott C system via non-autonomous approaches. Wu Q; Hong Q; Liu X; Wang X; Zeng Z Chaos; 2019 Apr; 29(4):043112. PubMed ID: 31042929 [TBL] [Abstract][Full Text] [Related]
33. Generating multi-double-scroll attractors via nonautonomous approach. Hong Q; Xie Q; Shen Y; Wang X Chaos; 2016 Aug; 26(8):083110. PubMed ID: 27586606 [TBL] [Abstract][Full Text] [Related]
34. Reconstructing bifurcation diagrams only from time-series data generated by electronic circuits in discrete-time dynamical systems. Itoh Y; Uenohara S; Adachi M; Morie T; Aihara K Chaos; 2020 Jan; 30(1):013128. PubMed ID: 32013489 [TBL] [Abstract][Full Text] [Related]
35. Generation of multi-scroll attractors without equilibria via piecewise linear systems. Escalante-González RJ; Campos-Cantón E; Nicol M Chaos; 2017 May; 27(5):053109. PubMed ID: 28576098 [TBL] [Abstract][Full Text] [Related]
36. On the origin of chaotic attractors with two zero Lyapunov exponents in a system of five biharmonically coupled phase oscillators. Grines EA; Kazakov A; Sataev IR Chaos; 2022 Sep; 32(9):093105. PubMed ID: 36182377 [TBL] [Abstract][Full Text] [Related]
37. Constructing Multiscroll Memristive Neural Network With Local Activity Memristor and Application in Image Encryption. Lai Q; Yang L; Hu G; Guan ZH; Iu HH IEEE Trans Cybern; 2024 Jul; 54(7):4039-4048. PubMed ID: 38546998 [TBL] [Abstract][Full Text] [Related]
38. Polynomial law for controlling the generation of n-scroll chaotic attractors in an optoelectronic delayed oscillator. Márquez BA; Suárez-Vargas JJ; Ramírez JA Chaos; 2014 Sep; 24(3):033123. PubMed ID: 25273203 [TBL] [Abstract][Full Text] [Related]
39. Chaotic attractors that exist only in fractional-order case. Matouk AE J Adv Res; 2023 Mar; 45():183-192. PubMed ID: 36849217 [TBL] [Abstract][Full Text] [Related]