These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 31575196)
1. Comparing theory and simulation for thermo-osmosis. Proesmans K; Frenkel D J Chem Phys; 2019 Sep; 151(12):124109. PubMed ID: 31575196 [TBL] [Abstract][Full Text] [Related]
2. A simple statistical-mechanical interpretation of Onsager reciprocal relations and Derjaguin theory of thermo-osmosis. Farago O Eur Phys J E Soft Matter; 2019 Oct; 42(10):136. PubMed ID: 31650276 [TBL] [Abstract][Full Text] [Related]
3. What Controls Thermo-osmosis? Molecular Simulations Show the Critical Role of Interfacial Hydrodynamics. Fu L; Merabia S; Joly L Phys Rev Lett; 2017 Nov; 119(21):214501. PubMed ID: 29219396 [TBL] [Abstract][Full Text] [Related]
4. Molecular Simulation of Thermo-osmotic Slip. Ganti R; Liu Y; Frenkel D Phys Rev Lett; 2017 Jul; 119(3):038002. PubMed ID: 28777647 [TBL] [Abstract][Full Text] [Related]
5. Onsager-Casimir reciprocal relations based on the Boltzmann equation and gas-surface interaction: single gas. Sharipov F Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026110. PubMed ID: 16605401 [TBL] [Abstract][Full Text] [Related]
6. Thermo-osmosis in hydrophilic nanochannels: mechanism and size effect. Chen WQ; Sedighi M; Jivkov AP Nanoscale; 2021 Jan; 13(3):1696-1716. PubMed ID: 33427268 [TBL] [Abstract][Full Text] [Related]
7. Thermo-osmosis of a near-critical binary fluid mixture: A general formulation and universal flow direction. Yabunaka S; Fujitani Y Phys Rev E; 2024 Jun; 109(6-1):064610. PubMed ID: 39021031 [TBL] [Abstract][Full Text] [Related]
8. Understanding Fast and Robust Thermo-osmotic Flows through Carbon Nanotube Membranes: Thermodynamics Meets Hydrodynamics. Fu L; Merabia S; Joly L J Phys Chem Lett; 2018 Apr; 9(8):2086-2092. PubMed ID: 29624390 [TBL] [Abstract][Full Text] [Related]
9. Droplet motion in one-component fluids on solid substrates with wettability gradients. Xu X; Qian T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051601. PubMed ID: 23004770 [TBL] [Abstract][Full Text] [Related]
10. Contact line motion in confined liquid-gas systems: Slip versus phase transition. Xu X; Qian T J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449 [TBL] [Abstract][Full Text] [Related]
11. Generating Shear Flows without Moving Parts by Thermo-osmosis in Heterogeneous Nanochannels. Wang X; Liu M; Jing D; Prezhdo O J Phys Chem Lett; 2021 Oct; 12(41):10099-10105. PubMed ID: 34633822 [TBL] [Abstract][Full Text] [Related]
12. Hamiltonian Transformation to Compute Thermo-osmotic Forces. Ganti R; Liu Y; Frenkel D Phys Rev Lett; 2018 Aug; 121(6):068002. PubMed ID: 30141645 [TBL] [Abstract][Full Text] [Related]
13. Thermal Forces from a Microscopic Perspective. Anzini P; Colombo GM; Filiberti Z; Parola A Phys Rev Lett; 2019 Jul; 123(2):028002. PubMed ID: 31386498 [TBL] [Abstract][Full Text] [Related]
14. Hydrodynamics of discrete-particle models of spherical colloids: a multiparticle collision dynamics simulation study. Poblete S; Wysocki A; Gompper G; Winkler RG Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033314. PubMed ID: 25314571 [TBL] [Abstract][Full Text] [Related]
15. Surface hydrophilicity-mediated migration of nano/microparticles under temperature gradient in a confined space. Xu H; Zheng X; Shi X J Colloid Interface Sci; 2023 May; 637():489-499. PubMed ID: 36724663 [TBL] [Abstract][Full Text] [Related]
16. Thermo-Osmotic Flow in Thin Films. Bregulla AP; Würger A; Günther K; Mertig M; Cichos F Phys Rev Lett; 2016 May; 116(18):188303. PubMed ID: 27203347 [TBL] [Abstract][Full Text] [Related]
17. Osmotic and diffusio-osmotic flow generation at high solute concentration. II. Molecular dynamics simulations. Yoshida H; Marbach S; Bocquet L J Chem Phys; 2017 May; 146(19):194702. PubMed ID: 28527431 [TBL] [Abstract][Full Text] [Related]
18. Molecular theory of hydrodynamic boundary conditions in nanofluidics. Kobryn AE; Kovalenko A J Chem Phys; 2008 Oct; 129(13):134701. PubMed ID: 19045110 [TBL] [Abstract][Full Text] [Related]
19. Slip and barodiffusion phenomena in slow flows of a gas mixture. Zhdanov VM Phys Rev E; 2017 Mar; 95(3-1):033106. PubMed ID: 28415189 [TBL] [Abstract][Full Text] [Related]