BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31575258)

  • 1. Knee exoskeleton enhanced with artificial intelligence to provide assistance-as-needed.
    Lyu M; Chen WH; Ding X; Wang J
    Rev Sci Instrum; 2019 Sep; 90(9):094101. PubMed ID: 31575258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.
    Ao D; Song R; Gao J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring Human-Exoskeleton Interaction Dynamics: An In-Depth Analysis of Knee Flexion-Extension Performance across Varied Robot Assistance-Resistance Configurations.
    Mosconi D; Moreno Y; Siqueira A
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation.
    Xu J; Li Y; Xu L; Peng C; Chen S; Liu J; Xu C; Cheng G; Xu H; Liu Y; Chen J
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2216-2228. PubMed ID: 31443038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assist-As-Needed Exoskeleton for Hand Joint Rehabilitation Based on Muscle Effort Detection.
    Castiblanco JC; Mondragon IF; Alvarado-Rojas C; Colorado JD
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an EMG-Controlled Knee Exoskeleton to Assist Home Rehabilitation in a Game Context.
    Lyu M; Chen WH; Ding X; Wang J; Pei Z; Zhang B
    Front Neurorobot; 2019; 13():67. PubMed ID: 31507400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern.
    Thangavel P; Vidhya S; Li J; Chew E; Bezerianos A; Yu H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():252-257. PubMed ID: 28813827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training.
    Wu Q; Wu H
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study.
    Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C
    Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human arm weight compensation in rehabilitation robotics: efficacy of three distinct methods.
    Just F; Özen Ö; Tortora S; Klamroth-Marganska V; Riener R; Rauter G
    J Neuroeng Rehabil; 2020 Feb; 17(1):13. PubMed ID: 32024528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.
    Leonardis D; Barsotti M; Loconsole C; Solazzi M; Troncossi M; Mazzotti C; Castelli VP; Procopio C; Lamola G; Chisari C; Bergamasco M; Frisoli A
    IEEE Trans Haptics; 2015; 8(2):140-51. PubMed ID: 25838528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Assistive Control Strategy for Rehabilitation Robots Using Velocity Field and Force Field.
    Asl HJ; Narikiyo T
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():790-795. PubMed ID: 31374727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke.
    Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X
    J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.
    Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.
    Li Z; Wang B; Sun F; Yang C; Xie Q; Zhang W
    IEEE J Biomed Health Inform; 2014 May; 18(3):1043-50. PubMed ID: 24235314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active and Progressive Exoskeleton Rehabilitation Using Multisource Information Fusion From EMG and Force-Position EPP.
    Fan Y; Yin Y
    IEEE Trans Biomed Eng; 2013 Dec; 60(12):3314-21. PubMed ID: 23771306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities.
    Eiammanussakul T; Sangveraphunsiri V
    J Healthc Eng; 2018; 2018():1927807. PubMed ID: 29808109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.