These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31575344)

  • 1. Identifying the start of a platelet aggregate by the shear rate and the cell-depleted layer.
    van Rooij BJM; Závodszky G; Azizi Tarksalooyeh VW; Hoekstra AG
    J R Soc Interface; 2019 Oct; 16(159):20190148. PubMed ID: 31575344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haemodynamic flow conditions at the initiation of high-shear platelet aggregation: a combined
    van Rooij BJM; Závodszky G; Hoekstra AG; Ku DN
    Interface Focus; 2021 Feb; 11(1):20190126. PubMed ID: 33335707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A continuum model for platelet transport in flowing blood based on direct numerical simulations of cellular blood flow.
    Mehrabadi M; Ku DN; Aidun CK
    Ann Biomed Eng; 2015 Jun; 43(6):1410-21. PubMed ID: 25348844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of microfluidics to assess the platelet-based control of coagulation.
    Nagy M; Heemskerk JWM; Swieringa F
    Platelets; 2017 Jul; 28(5):441-448. PubMed ID: 28358995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow.
    Folie BJ; McIntire LV
    Biophys J; 1989 Dec; 56(6):1121-41. PubMed ID: 2611327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paradoxical Effect of Nonphysiological Shear Stress on Platelets and von Willebrand Factor.
    Chen Z; Mondal NK; Ding J; Koenig SC; Slaughter MS; Wu ZJ
    Artif Organs; 2016 Jul; 40(7):659-68. PubMed ID: 26582038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuum modeling of thrombus formation and growth under different shear rates.
    Rezaeimoghaddam M; van de Vosse FN
    J Biomech; 2022 Feb; 132():110915. PubMed ID: 35032838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validated model of platelet slip at stenosis and device surfaces.
    Denardo SJ; Denardo BC; Carpinone PL; Dean WT; New DM; Estrada LE; Green CL; Yock PG; Karunasiri G
    Platelets; 2020; 31(3):373-382. PubMed ID: 31311384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of tissue factor in von Willebrand factor-dependent thrombus formation under whole blood flow conditions.
    Matsunari Y; Sugimoto M; Doi M; Matsui H; Kawaguchi M
    Int J Hematol; 2016 Dec; 104(6):661-668. PubMed ID: 27562418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thrombus Formation at High Shear Rates.
    Casa LDC; Ku DN
    Annu Rev Biomed Eng; 2017 Jun; 19():415-433. PubMed ID: 28441034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of platelet adhesion and aggregation regulated by fibrinogen and von Willebrand factor.
    Mori D; Yano K; Tsubota K; Ishikawa T; Wada S; Yamaguchi T
    Thromb Haemost; 2008 Jan; 99(1):108-15. PubMed ID: 18217141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Platelets Drive Thrombus Propagation in a Hematocrit and Glycoprotein VI-Dependent Manner in an In Vitro Venous Thrombosis Model.
    Lehmann M; Schoeman RM; Krohl PJ; Wallbank AM; Samaniuk JR; Jandrot-Perrus M; Neeves KB
    Arterioscler Thromb Vasc Biol; 2018 May; 38(5):1052-1062. PubMed ID: 29472230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study on Platelet Adhesion and Aggregation Induced by Gradient Shear Stress Using Microfluidic Chip Technology].
    Ma HD; He C; Deng SR; Zhang TT; Li Y; Zhang TC
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2023 Apr; 31(2):495-502. PubMed ID: 37096525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of high shear rate in thrombosis.
    Casa LD; Deaton DH; Ku DN
    J Vasc Surg; 2015 Apr; 61(4):1068-80. PubMed ID: 25704412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood.
    Li M; Ku DN; Forest CR
    Lab Chip; 2012 Apr; 12(7):1355-62. PubMed ID: 22358184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A General Shear-Dependent Model for Thrombus Formation.
    Yazdani A; Li H; Humphrey JD; Karniadakis GE
    PLoS Comput Biol; 2017 Jan; 13(1):e1005291. PubMed ID: 28095402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Stenotic Microchannels to Study Thrombus Formation in Shear Gradients: Influence of Shear Forces and Human Platelet-Related Factors.
    Lui M; Gardiner EE; Arthur JF; Pinar I; Lee WM; Ryan K; Carberry J; Andrews RK
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31216638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-dimensional multiscale model for the prediction of thrombus growth under flow with single-platelet resolution.
    Shankar KN; Zhang Y; Sinno T; Diamond SL
    PLoS Comput Biol; 2022 Jan; 18(1):e1009850. PubMed ID: 35089923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biorheology of occlusive thrombi formation under high shear: in vitro growth and shrinkage.
    van Rooij BJM; Závodszky G; Hoekstra AG; Ku DN
    Sci Rep; 2020 Oct; 10(1):18604. PubMed ID: 33122712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utility of microfluidic devices to study the platelet-endothelium interface.
    Zilberman-Rudenko J; Sylman JL; Garland KS; Puy C; Wong AD; Searson PC; McCarty OJT
    Platelets; 2017 Jul; 28(5):449-456. PubMed ID: 28358586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.