These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 315755)

  • 1. Subsite mapping of enzymes. Use of subsite map to simulate complete time course of hydrolysis of a polymeric substrate.
    Torgerson EM; Brewer LC; Thoma JA
    Arch Biochem Biophys; 1979 Aug; 196(1):13-22. PubMed ID: 315755
    [No Abstract]   [Full Text] [Related]  

  • 2. Subsite mapping on enzymes: application to polysaccharide depolymerases.
    Allen JD
    Methods Enzymol; 1980; 64():248-77. PubMed ID: 6966365
    [No Abstract]   [Full Text] [Related]  

  • 3. A stochastic model for predicting dextrose equivalent and saccharide composition during hydrolysis of starch by alpha-amylase.
    Besselink T; Baks T; Janssen AE; Boom RM
    Biotechnol Bioeng; 2008 Jul; 100(4):684-97. PubMed ID: 18351657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of hog pancreas alpha-amylase, development of the multiple attack model.
    Hutny J; Ugorski M
    Arch Biochem Biophys; 1981 Jan; 206(1):29-42. PubMed ID: 6163397
    [No Abstract]   [Full Text] [Related]  

  • 5. Action pattern and subsite mapping of Bacillus licheniformis alpha-amylase (BLA) with modified maltooligosaccharide substrates.
    Kandra L; Gyémánt G; Remenyik J; Hovánszki G; Lipták A
    FEBS Lett; 2002 May; 518(1-3):79-82. PubMed ID: 11997021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational docking, molecular dynamics simulation and subsite structure analysis of a maltogenic amylase from Bacillus lehensis G1 provide insights into substrate and product specificity.
    Manas NH; Bakar FD; Illias RM
    J Mol Graph Model; 2016 Jun; 67():1-13. PubMed ID: 27155296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subsite mapping of enzymes. Application of the depolymerase computer model to two alpha-amylases.
    Allen JD; Thoma JA
    Biochem J; 1976 Oct; 159(1):121-32. PubMed ID: 999630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping of barley alpha-amylases and outer subsite mutants reveals dynamic high-affinity subsites and barriers in the long substrate binding cleft.
    Kandra L; Hachem MA; Gyémánt G; Kramhøft B; Svensson B
    FEBS Lett; 2006 Sep; 580(21):5049-53. PubMed ID: 16949579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Models of amylolysis and subsite mapping of amylases (author's transl)].
    Hutny J
    Postepy Biochem; 1979; 25(4):533-46. PubMed ID: 94671
    [No Abstract]   [Full Text] [Related]  

  • 10. Subsite mapping of enzymes. Correlation of product patterns with Michaelis parameters and substrate-induced strain.
    Thoma JA; Rao GV; Brothers C; Spradlin J; Li LH
    J Biol Chem; 1971 Sep; 246(18):5621-35. PubMed ID: 5096086
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of temperature on subsite map of Bacillus licheniformis alpha-amylase.
    Kandra L; Remenyik J; Gyémánt G; Lipták A
    Acta Biol Hung; 2006 Sep; 57(3):367-75. PubMed ID: 17048700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulation of the alpha-amylolysis of amylopectin potato starch. 2. alpha-amylolysis of amylopectin.
    Marchal LM; Ulijn RV; De Gooijer CD; Franke GT; Tramper J
    Bioprocess Biosyst Eng; 2003 Dec; 26(2):123-32. PubMed ID: 14618387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subsite mapping of enzymes. Depolymerase computer modelling.
    Allen JD; Thoma JA
    Biochem J; 1976 Oct; 159(1):105-20. PubMed ID: 999629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introducing transglycosylation activity in Bacillus licheniformis α-amylase by replacement of His235 with Glu.
    Tran PL; Cha HJ; Lee JS; Park SH; Woo EJ; Park KH
    Biochem Biophys Res Commun; 2014 Sep; 451(4):541-7. PubMed ID: 25117441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subsite profile of the active center of porcine pancreatic alpha-amylase. Kinetic studies using maltooligosaccharides as substrates.
    Prodanov E; Seigner C; Marchis-Mouren G
    Biochem Biophys Res Commun; 1984 Jul; 122(1):75-81. PubMed ID: 6611158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subsite mapping of enzymes. Double inhibition studies.
    Thoma JA; Crook C
    Eur J Biochem; 1982 Mar; 122(3):613-8. PubMed ID: 6174337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental evidence for a 9-binding subsite of Bacillus licheniformis thermostable α-amylase.
    Tran PL; Lee JS; Park KH
    FEBS Lett; 2014 Feb; 588(4):620-4. PubMed ID: 24440349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate binding nodes of Bacillus amyloliquefaciens alpha-amylase.
    Dua RD; Kochhar S
    Indian J Biochem Biophys; 1986 Jun; 23(3):133-9. PubMed ID: 3491781
    [No Abstract]   [Full Text] [Related]  

  • 19. Subsite mapping of enzymes: collecting and processing experimental data--a case study of an amylase-malto-oligosaccharide system.
    Thoma JA; Allen JD
    Carbohydr Res; 1976 May; 48(1):105-24. PubMed ID: 949715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the substrate specificity of Taka-amylase A1. XIV. Preparation of 6-deoxy-6-halogenomaltotrioses and their hydrolysis by Taka-amylase A.
    Omichi K; Matsushima Y
    J Biochem; 1978 Oct; 84(4):835-41. PubMed ID: 309468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.