These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31575883)

  • 1. Mathematical modelling the pathway of genomic instability in lung cancer.
    Li L; Zhang X; Tian T; Pang L
    Sci Rep; 2019 Oct; 9(1):14136. PubMed ID: 31575883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of radiation on the development of lung cancer.
    Li L; Tian T; Zhang X
    J Theor Biol; 2017 Sep; 428():147-152. PubMed ID: 28645856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer incidence in atomic bomb survivors. Part I: Use of the tumor registries in Hiroshima and Nagasaki for incidence studies.
    Mabuchi K; Soda M; Ron E; Tokunaga M; Ochikubo S; Sugimoto S; Ikeda T; Terasaki M; Preston DL; Thompson DE
    Radiat Res; 1994 Feb; 137(2 Suppl):S1-16. PubMed ID: 8127951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation therapy among atomic bomb survivors, Hiroshima and Nagasaki.
    Kato K; Antoku S; Russell WJ; Fujita S; Pinkston JA; Hayabuchi N; Hoshi M; Kodama K
    Radiat Res; 1998 Jun; 149(6):614-24. PubMed ID: 9611100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible expressions of radiation-induced genomic instability, bystander effects or low-dose hypersensitivity in cancer epidemiology.
    Jacob P; Meckbach R; Kaiser JC; Sokolnikov M
    Mutat Res; 2010 May; 687(1-2):34-39. PubMed ID: 20096708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biologically based analysis of lung cancer incidence in a large Canadian occupational cohort with low-dose ionizing radiation exposure, and comparison with Japanese atomic bomb survivors.
    Hazelton WD; Moolgavkar SH; Curtis SB; Zielinski JM; Ashmore JP; Krewski D
    J Toxicol Environ Health A; 2006 Jun; 69(11):1013-38. PubMed ID: 16840251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic instability in the epidermis induced by atomic bomb (A-bomb) radiation: a long-lasting health effect in A-bomb survivors.
    Naruke Y; Nakashima M; Suzuki K; Kondo H; Hayashi T; Soda M; Sekine I
    Cancer; 2009 Aug; 115(16):3782-90. PubMed ID: 19517458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mortality study of atomic-bomb survivors: implications for assessment of radiation accidents.
    Shimizu Y; Mabuchi K; Preston DL; Shigematsu I
    World Health Stat Q; 1996; 49(1):35-9. PubMed ID: 8896256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer incidence in atomic bomb survivors. Part II: Solid tumors, 1958-1987.
    Thompson DE; Mabuchi K; Ron E; Soda M; Tokunaga M; Ochikubo S; Sugimoto S; Ikeda T; Terasaki M; Izumi S
    Radiat Res; 1994 Feb; 137(2 Suppl):S17-67. PubMed ID: 8127952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular pathology of non-small-cell lung cancer.
    Breuer RH; Postmus PE; Smit EF
    Respiration; 2005; 72(3):313-30. PubMed ID: 15942304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancer incidence in atomic bomb survivors. Part IV: Comparison of cancer incidence and mortality.
    Ron E; Preston DL; Mabuchi K; Thompson DE; Soda M
    Radiat Res; 1994 Feb; 137(2 Suppl):S98-112. PubMed ID: 8127954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic instability in cancer: biological and mathematical approaches.
    Komarova NL
    Cell Cycle; 2004 Aug; 3(8):1081-5. PubMed ID: 15254400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk factors for primary breast cancer in Japan: 8-year follow-up of atomic bomb survivors.
    Goodman MT; Cologne JB; Moriwaki H; Vaeth M; Mabuchi K
    Prev Med; 1997; 26(1):144-53. PubMed ID: 9010910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breast cancer risk after radiation treatment at infancy: potential consequences of radiation-induced genomic instability.
    Eidemüller M; Holmberg E; Jacob P; Lundell M; Karlsson P
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):375-9. PubMed ID: 21296770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of carcinogenesis and low-dose hypersensitivity: an application to lung cancer incidence among atomic bomb survivors.
    Jacob V; Jacob P
    Radiat Environ Biophys; 2004 Feb; 42(4):265-73. PubMed ID: 14676961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958-2009.
    Grant EJ; Brenner A; Sugiyama H; Sakata R; Sadakane A; Utada M; Cahoon EK; Milder CM; Soda M; Cullings HM; Preston DL; Mabuchi K; Ozasa K
    Radiat Res; 2017 May; 187(5):513-537. PubMed ID: 28319463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparisons of lung tumour mortality risk in the Japanese A-bomb survivors and in the Colorado Plateau uranium miners: support for the ICRP lung model.
    Little MP
    Int J Radiat Biol; 2002 Mar; 78(3):145-63. PubMed ID: 11869470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stochastic carcinogenesis model incorporating multiple types of genomic instability fitted to colon cancer data.
    Little MP; Vineis P; Li G
    J Theor Biol; 2008 Sep; 254(2):229-38. PubMed ID: 18640693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of genomic instability in human carcinogenesis.
    Moon JJ; Lu A; Moon C
    Exp Biol Med (Maywood); 2019 Mar; 244(3):227-240. PubMed ID: 30760030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer-specific genomic instability in bronchial lavage: a molecular tool for lung cancer detection.
    Liloglou T; Maloney P; Xinarianos G; Hulbert M; Walshaw MJ; Gosney JR; Turnbull L; Field JK
    Cancer Res; 2001 Feb; 61(4):1624-8. PubMed ID: 11245475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.