BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31575957)

  • 1. A value-added multistage utilization process for the gradient-recovery tin, iron and preparing composite phase change materials (C-PCMs) from tailings.
    Su Z; Tu Y; Chen X; Zhang Y; Han B; Anderson C; Jiang T
    Sci Rep; 2019 Oct; 9(1):14097. PubMed ID: 31575957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sn recovery from a tin-bearing middling with a high iron content and the transformation behaviours of the associated As, Pb, and Zn.
    Yu Y; Li L; Wang J
    Sci Total Environ; 2020 Nov; 744():140863. PubMed ID: 32687998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Innovative methodology for comprehensive utilization of iron ore tailings: part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting.
    Li C; Sun H; Bai J; Li L
    J Hazard Mater; 2010 Feb; 174(1-3):71-7. PubMed ID: 19782467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multistage utilization process for the gradient-recovery of V, Fe, and Ti from vanadium-bearing converter slag.
    Xiang J; Huang Q; Lv X; Bai C
    J Hazard Mater; 2017 Aug; 336():1-7. PubMed ID: 28463734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass waste as a clean reductant for iron recovery of iron tailings by magnetization roasting.
    Deng J; Ning XA; Shen J; Ou W; Chen J; Qiu G; Wang Y; He Y
    J Environ Manage; 2022 Sep; 317():115435. PubMed ID: 35751253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sn separation from Sn-bearing iron concentrates by roasting with waste tire rubber in N
    Yu Y; Li L; Wang J; Wang J; Li K
    J Hazard Mater; 2019 Jun; 371():440-448. PubMed ID: 30875571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation.
    Zhang Y; Li H; Yu X
    J Hazard Mater; 2012 Apr; 213-214():167-74. PubMed ID: 22333161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of Iron and Rare Earths from Low-Intensity Magnetic Separation (LIMS) Tailings through Magnetization Roasting-Magnetic Separation.
    Hou S; Wang W; Zhang B; Li W; Guo C; Li Q; Li E
    ChemistryOpen; 2024 Feb; 13(2):e202300059. PubMed ID: 37902712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery iron from cyanide tailings by anaerobic roasting-persulfate leaching: effect of roasting temperature.
    Dong P; Song Y; Wu L; Bao J; Yin N; Zhu R; Li Y
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):50537-50548. PubMed ID: 36795215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient utilization of chromium-containing vanadium tailings: Extraction of chromium by soda roasting-water leaching and preparation of chromium oxide.
    Wen J; Jiang T; Gao H; Zhou W; Xu Y; Zheng X; Liu Y; Xue X
    J Environ Manage; 2019 Aug; 244():119-126. PubMed ID: 31112876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of tailings from the vanadium extraction process by carbothermic reduction method: Thermodynamic, experimental and hazardous potential assessment.
    Xiang J; Huang Q; Lv W; Pei G; Lv X; Bai C
    J Hazard Mater; 2018 Sep; 357():128-137. PubMed ID: 29870897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of iron from vanadium tailings with coal-based direct reduction followed by magnetic separation.
    Yang H; Jing L; Zhang B
    J Hazard Mater; 2011 Jan; 185(2-3):1405-11. PubMed ID: 21071144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of iron from iron tailings by suspension magnetization roasting with biomass-derived pyrolytic gas.
    Qiu G; Ning X; Shen J; Wang Y; Zhang D; Deng J
    Waste Manag; 2023 Feb; 156():255-263. PubMed ID: 36508909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The enrichment and transformation mechanism of Pb and Cu in suspension magnetization roasting and magnetic separation from iron tailings.
    Qiu G; Ning X; Zhang D; Deng J; Wang Y
    Waste Manag; 2024 Jul; 184():82-91. PubMed ID: 38797126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic Removal and Iron Recovery from Arsenic-Bearing Iron Ores by Calcification-Magnetic Roasting and Magnetic Separation Process.
    Dai M; Zhou Y; Xiao Q; Lv J; Huang L; Xie X; Hu Y; Tong X; Chun T
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An approach of cobalt recovery from waste copper converter slags using pig iron as capturing agent and simultaneous recovery of copper and tin.
    Li L; Xiao Y; Lei Y; Xu J; Xu Z
    Waste Manag; 2023 Jun; 165():1-11. PubMed ID: 37075684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of iron tailings to prepare high-surface area mesoporous silica materials.
    Lu C; Yang H; Wang J; Tan Q; Fu L
    Sci Total Environ; 2020 Sep; 736():139483. PubMed ID: 32473455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovative methodology for comprehensive utilization of iron ore tailings: part 2: The residues after iron recovery from iron ore tailings to prepare cementitious material.
    Li C; Sun H; Yi Z; Li L
    J Hazard Mater; 2010 Feb; 174(1-3):78-83. PubMed ID: 19782471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient iron recovery from iron tailings using advanced suspension reduction technology: A study of reaction kinetics, phase transformation, and structure evolution.
    Yuan S; Zhang Q; Yin H; Li Y
    J Hazard Mater; 2021 Feb; 404(Pt B):124067. PubMed ID: 33086183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Iron Tailings-Based Composite Supplementary Cementitious Materials (SCMs) in Green Concrete.
    Zhang Y; Yang D; Gu X; Chen H; Li Z
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.