These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 31576006)
41. Supplemental Upward Lighting from Underneath to Obtain Higher Marketable Lettuce (Lactuca sativa) Leaf Fresh Weight by Retarding Senescence of Outer Leaves. Zhang G; Shen S; Takagaki M; Kozai T; Yamori W Front Plant Sci; 2015; 6():1110. PubMed ID: 26697055 [TBL] [Abstract][Full Text] [Related]
42. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Else MA; Janowiak F; Atkinson CJ; Jackson MB Ann Bot; 2009 Jan; 103(2):313-23. PubMed ID: 19001430 [TBL] [Abstract][Full Text] [Related]
43. Morphology, Photosynthetic Traits, and Nutritional Quality of Lettuce Plants as Affected by Green Light Substituting Proportion of Blue and Red Light. Li L; Tong YX; Lu JL; Li YM; Liu X; Cheng RF Front Plant Sci; 2021; 12():627311. PubMed ID: 34305958 [TBL] [Abstract][Full Text] [Related]
44. Application of Chlorophyll Fluorescence Analysis Technique in Studying the Response of Lettuce ( Zhou L; Zhou L; Wu H; Jing T; Li T; Li J; Kong L; Zhu F Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475037 [TBL] [Abstract][Full Text] [Related]
45. Effect of differences in light source environment on transcriptome of leaf lettuce (Lactuca sativa L.) to optimize cultivation conditions. Nagano S; Mori N; Tomari Y; Mitsugi N; Deguchi A; Kashima M; Tezuka A; Nagano AJ; Usami H; Tanabata T; Watanabe H PLoS One; 2022; 17(3):e0265994. PubMed ID: 35349601 [TBL] [Abstract][Full Text] [Related]
46. Phenomic and Physiological Analysis of Salinity Effects on Lettuce. Adhikari ND; Simko I; Mou B Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31694293 [TBL] [Abstract][Full Text] [Related]
47. Role of sucrose in modulating the low-nitrogen-induced accumulation of phenolic compounds in lettuce (Lactuca sativa L.). Zhou W; Liang X; Zhang Y; Dai P; Liang B; Li J; Sun C; Lin X J Sci Food Agric; 2020 Dec; 100(15):5412-5421. PubMed ID: 32562270 [TBL] [Abstract][Full Text] [Related]
48. Blue Photons from Broad-Spectrum LEDs Control Growth, Morphology, and Coloration of Indoor Hydroponic Red-Leaf Lettuce. Meng Q; Runkle ES Plants (Basel); 2023 Mar; 12(5):. PubMed ID: 36903988 [TBL] [Abstract][Full Text] [Related]
49. [Effects of different LED light qualities on growth, photosynthetic characteristics and nutritional quality of savoy]. Chen XW; Liu SQ; Wang Y; Liu JK; Feng L Ying Yong Sheng Tai Xue Bao; 2014 Jul; 25(7):1955-62. PubMed ID: 25345045 [TBL] [Abstract][Full Text] [Related]
50. Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort). Gao M; Liu Y; Song Z Chemosphere; 2019 Dec; 237():124482. PubMed ID: 31398608 [TBL] [Abstract][Full Text] [Related]
51. Response of Cyanic and Acyanic Lettuce Cultivars to an Increased Proportion of Blue Light. Cammarisano L; Körner O Biology (Basel); 2022 Jun; 11(7):. PubMed ID: 36101340 [TBL] [Abstract][Full Text] [Related]
52. Enhancement of lettuce yield by manipulation of light and nitrogen nutrition. Knight SL; Mitchell CA HortScience; 1983 Sep; 108(5):750-4. PubMed ID: 11542284 [TBL] [Abstract][Full Text] [Related]
53. Photosynthetic Physiology of Blue, Green, and Red Light: Light Intensity Effects and Underlying Mechanisms. Liu J; van Iersel MW Front Plant Sci; 2021; 12():619987. PubMed ID: 33747002 [TBL] [Abstract][Full Text] [Related]
54. Effects of Light Spectral Quality on Photosynthetic Activity, Biomass Production, and Carbon Isotope Fractionation in Lettuce, Tarakanov IG; Tovstyko DA; Lomakin MP; Shmakov AS; Sleptsov NN; Shmarev AN; Litvinskiy VA; Ivlev AA Plants (Basel); 2022 Feb; 11(3):. PubMed ID: 35161422 [TBL] [Abstract][Full Text] [Related]
55. Optimizing lettuce yields and quality by incorporating movable downward lighting with a supplemental adjustable sideward lighting system in a plant factory. Mutombo Arcel M; Yousef AF; Shen ZH; Nyimbo WJ; Zheng SH PeerJ; 2023; 11():e15401. PubMed ID: 37334128 [TBL] [Abstract][Full Text] [Related]
56. Leaf morphology, optical characteristics and phytochemical traits of butterhead lettuce affected by increasing the far-red photon flux. Van de Velde E; Steppe K; Van Labeke MC Front Plant Sci; 2023; 14():1129335. PubMed ID: 37600174 [TBL] [Abstract][Full Text] [Related]
57. Plant Growth and Photosynthetic Characteristics of He J; Qin L; Chong EL; Choong TW; Lee SK Front Plant Sci; 2017; 8():361. PubMed ID: 28367156 [No Abstract] [Full Text] [Related]
58. Modifying the Ambient Light Spectrum Using LED Lamps Alters the Phenolic Profile of Hydroponically Grown Greenhouse Lettuce Plants without Affecting Their Agronomic Characteristics. Hernández-Adasme C; Silva H; Peña Á; Vargas-Martínez MG; Salazar-Parra C; Sun B; Escalona Contreras V Plants (Basel); 2024 Sep; 13(17):. PubMed ID: 39273950 [TBL] [Abstract][Full Text] [Related]
59. Leaf morphological and physiological adjustments to the spectrally selective shade imposed by anthocyanins in Prunus cerasifera. Kyparissis A; Grammatikopoulos G; Manetas Y Tree Physiol; 2007 Jun; 27(6):849-57. PubMed ID: 17331903 [TBL] [Abstract][Full Text] [Related]
60. Spermine delays leaf senescence in Lactuca sativa and prevents the decay of chloroplast photosystems. Serafini-Fracassini D; Di Sandro A; Del Duca S Plant Physiol Biochem; 2010 Jul; 48(7):602-11. PubMed ID: 20381367 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]