These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31576414)

  • 1. Heat shock protein 70 is a key molecule to rescue imbalance caused by low-frequency noise.
    Negishi-Oshino R; Ohgami N; He T; Li X; Kato M; Kobayashi M; Gu Y; Komuro K; Angelidis CE; Kato M
    Arch Toxicol; 2019 Nov; 93(11):3219-3228. PubMed ID: 31576414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased expression level of Hsp70 in the inner ears of mice by exposure to low frequency noise.
    Ninomiya H; Ohgami N; Oshino R; Kato M; Ohgami K; Li X; Shen D; Iida M; Yajima I; Angelidis CE; Adachi H; Katsuno M; Sobue G; Kato M
    Hear Res; 2018 Jun; 363():49-54. PubMed ID: 29519617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new method with an explant culture of the utricle for assessing the influence of exposure to low-frequency noise on the vestibule.
    Ohgami N; He T; Oshino-Negishi R; Gu Y; Li X; Kato M
    J Toxicol Environ Health A; 2020 Mar; 83(5):215-218. PubMed ID: 32249697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic exposure to low frequency noise at moderate levels causes impaired balance in mice.
    Tamura H; Ohgami N; Yajima I; Iida M; Ohgami K; Fujii N; Itabe H; Kusudo T; Yamashita H; Kato M
    PLoS One; 2012; 7(6):e39807. PubMed ID: 22768129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Risk Assessment of Neonatal Exposure to Low Frequency Noise Based on Balance in Mice.
    Ohgami N; Oshino R; Ninomiya H; Li X; Kato M; Yajima I; Kato M
    Front Behav Neurosci; 2017; 11():30. PubMed ID: 28275341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cVEMP correlated with imbalance in a mouse model of vestibular disorder.
    Negishi-Oshino R; Ohgami N; He T; Ohgami K; Li X; Kato M
    Environ Health Prev Med; 2019 Jun; 24(1):39. PubMed ID: 31153359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Impairments of Inner Ears Caused by Physical Environmental Stresses].
    Ohgami N; Oshino R; Ninomiya H; Li X; Kato M
    Nihon Eiseigaku Zasshi; 2017; 72(1):38-42. PubMed ID: 28154359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related changes of the globular substance in the otoconial membrane of mice.
    Suzuki H; Ikeda K; Takasaka T
    Laryngoscope; 1997 Mar; 107(3):378-81. PubMed ID: 9121317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of noise fluctuation and spectral bandwidth on gap detection.
    Hall JW; Buss E; Ozmeral EJ; Grose JH
    J Acoust Soc Am; 2016 Apr; 139(4):1601. PubMed ID: 27106308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term measurement study of urban environmental low frequency noise.
    Leaffer DJ; Suh H; Durant JL; Tracey B; Roof C; Gute DM
    J Expo Sci Environ Epidemiol; 2023 Sep; ():. PubMed ID: 37696975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular endothelium as a target tissue for short-term exposure to low-frequency noise that increases cutaneous blood flow.
    Deng Y; Ohgami N; Kagawa T; Kurniasari F; Chen D; Kato M; Tazaki A; Aoki M; Katsuta H; Tong K; Gu Y; Kato M
    Sci Total Environ; 2022 Dec; 851(Pt 1):158828. PubMed ID: 36191705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effects of Low-Frequency Noise on Rats: Evidence of Chromosomal Aberrations in the Bone Marrow Cells and the Release of Low-Molecular-Weight DNA in the Blood Plasma.
    Vasilyeva IN; Bespalov VG; Semenov AL; Baranenko DA; Zinkin VN
    Noise Health; 2017; 19(87):79-83. PubMed ID: 29192617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of high intensity noise on the vestibular system in rats.
    Stewart C; Yu Y; Huang J; Maklad A; Tang X; Allison J; Mustain W; Zhou W; Zhu H
    Hear Res; 2016 May; 335():118-127. PubMed ID: 26970474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Air-Conducted Vestibular Evoked Myogenic Potential Testing in Children, Adolescents, and Young Adults: Thresholds, Frequency Tuning, and Effects of Sound Exposure.
    Rodriguez AI; Thomas MLA; Janky KL
    Ear Hear; 2019; 40(1):192-203. PubMed ID: 29870520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myocardial fibrosis in rats exposed to low frequency noise.
    Antunes E; Oliveira P; Borrecho G; Oliveira MJ; Brito J; Aguas A; Martins dos SJ
    Acta Cardiol; 2013 Jun; 68(3):241-5. PubMed ID: 23882868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vestibular-evoked myogenic potentials in chronic noise-induced hearing loss.
    Wang YP; Young YH
    Otolaryngol Head Neck Surg; 2007 Oct; 137(4):607-11. PubMed ID: 17903578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of low-frequency noise from wind turbines under different weather conditions.
    Chiu CH; Lung SC
    J Environ Health Sci Eng; 2020 Dec; 18(2):505-514. PubMed ID: 33312579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of low-frequency noise from wind turbines on heart rate variability in healthy individuals.
    Chiu CH; Lung SC; Chen N; Hwang JS; Tsou MM
    Sci Rep; 2021 Sep; 11(1):17817. PubMed ID: 34497296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effect of low frequency noise on human mental performance].
    Pawlaczyk-Łuszczyńska M; Dudarewicz A; Waszkowska M; Szymczak W; Kameduła M; Sliwińska-Kowalska M
    Med Pr; 2004; 55(1):63-74. PubMed ID: 15156769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency preference in cervical vestibular evoked myogenic potential of idiopathic otolithic vertigo patients. Does it reflect otolithic endolymphatic hydrops?
    Murofushi T; Komiyama S; Hayashi Y; Yoshimura E
    Acta Otolaryngol; 2015; 135(10):995-9. PubMed ID: 25990760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.