These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31576520)

  • 21. Peptidomics of Acanthoscurria gomesiana spider venom reveals new toxins with potential antimicrobial activity.
    Abreu TF; Sumitomo BN; Nishiyama MY; Oliveira UC; Souza GH; Kitano ES; Zelanis A; Serrano SM; Junqueira-de-Azevedo I; Silva PI; Tashima AK
    J Proteomics; 2017 Jan; 151():232-242. PubMed ID: 27436114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and Evolutionary Analysis of the Widely Distributed CAP Superfamily in Spider Venom.
    Jiang H; Wang Y; Zhang G; Jia A; Wei Z; Wang Y
    Toxins (Basel); 2024 May; 16(6):. PubMed ID: 38922134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases.
    Kini RM; Koh CY
    Biochem Pharmacol; 2020 Nov; 181():114105. PubMed ID: 32579959
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and molecular characterization of five putative toxins from the venom gland of the snake Philodryas chamissonis (Serpentes: Dipsadidae).
    Urra FA; Pulgar R; Gutiérrez R; Hodar C; Cambiazo V; Labra A
    Toxicon; 2015 Dec; 108():19-31. PubMed ID: 26410112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spider-venom peptides that target voltage-gated sodium channels: pharmacological tools and potential therapeutic leads.
    Klint JK; Senff S; Rupasinghe DB; Er SY; Herzig V; Nicholson GM; King GF
    Toxicon; 2012 Sep; 60(4):478-91. PubMed ID: 22543187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Facts on venomous animals].
    Goyffon M
    Ann Pharm Fr; 1994; 52(2):99-109. PubMed ID: 7944185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene.
    Pineda SS; Chin YK; Undheim EAB; Senff S; Mobli M; Dauly C; Escoubas P; Nicholson GM; Kaas Q; Guo S; Herzig V; Mattick JS; King GF
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11399-11408. PubMed ID: 32398368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Snake venom toxins: Potential anticancer therapeutics.
    Offor BC; Piater LA
    J Appl Toxicol; 2024 May; 44(5):666-685. PubMed ID: 37697914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Minor snake venom proteins: Structure, function and potential applications.
    Boldrini-França J; Cologna CT; Pucca MB; Bordon KC; Amorim FG; Anjolette FA; Cordeiro FA; Wiezel GA; Cerni FA; Pinheiro-Junior EL; Shibao PY; Ferreira IG; de Oliveira IS; Cardoso IA; Arantes EC
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):824-838. PubMed ID: 28012742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diversity Begets Diversity When Diet Drives Snake Venom Evolution, but Evenness Rather Than Richness Is What Counts.
    Schaeffer R; Pascolutti VJ; Jackson TNW; Arbuckle K
    Toxins (Basel); 2023 Mar; 15(4):. PubMed ID: 37104189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The venom optimization hypothesis revisited.
    Morgenstern D; King GF
    Toxicon; 2013 Mar; 63():120-8. PubMed ID: 23266311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Absolute venomics: Absolute quantification of intact venom proteins through elemental mass spectrometry.
    Calderón-Celis F; Cid-Barrio L; Encinar JR; Sanz-Medel A; Calvete JJ
    J Proteomics; 2017 Jul; 164():33-42. PubMed ID: 28579478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in the understanding of brown spider venoms: From the biology of spiders to the molecular mechanisms of toxins.
    Gremski LH; Trevisan-Silva D; Ferrer VP; Matsubara FH; Meissner GO; Wille AC; Vuitika L; Dias-Lopes C; Ullah A; de Moraes FR; Chávez-Olórtegui C; Barbaro KC; Murakami MT; Arni RK; Senff-Ribeiro A; Chaim OM; Veiga SS
    Toxicon; 2014 Jun; 83():91-120. PubMed ID: 24631373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Therapeutic applications of snake venoms: An invaluable potential of new drug candidates.
    Diniz-Sousa R; Caldeira CADS; Pereira SS; Da Silva SL; Fernandes PA; Teixeira LMC; Zuliani JP; Soares AM
    Int J Biol Macromol; 2023 May; 238():124357. PubMed ID: 37028634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Omics Technologies for Profiling Toxin Diversity and Evolution in Snake Venom: Impacts on the Discovery of Therapeutic and Diagnostic Agents.
    Modahl CM; Brahma RK; Koh CY; Shioi N; Kini RM
    Annu Rev Anim Biosci; 2020 Feb; 8():91-116. PubMed ID: 31702940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Privileged frameworks from snake venom.
    Reeks TA; Fry BG; Alewood PF
    Cell Mol Life Sci; 2015 May; 72(10):1939-58. PubMed ID: 25693678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spider-venom peptides as therapeutics.
    Saez NJ; Senff S; Jensen JE; Er SY; Herzig V; Rash LD; King GF
    Toxins (Basel); 2010 Dec; 2(12):2851-71. PubMed ID: 22069579
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and pharmacology of spider venom neurotoxins.
    Escoubas P; Diochot S; Corzo G
    Biochimie; 2000; 82(9-10):893-907. PubMed ID: 11086219
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas.
    Yuan CH; He QY; Peng K; Diao JB; Jiang LP; Tang X; Liang SP
    PLoS One; 2008; 3(10):e3414. PubMed ID: 18923708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toxin diversity revealed by a transcriptomic study of Ornithoctonus huwena.
    Zhang Y; Huang Y; He Q; Liu J; Luo J; Zhu L; Lu S; Huang P; Chen X; Zeng X; Liang S
    PLoS One; 2014; 9(6):e100682. PubMed ID: 24949878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.