These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 31576621)

  • 1. Pharmmaker: Pharmacophore modeling and hit identification based on druggability simulations.
    Lee JY; Krieger JM; Li H; Bahar I
    Protein Sci; 2020 Jan; 29(1):76-86. PubMed ID: 31576621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual Screening Using Pharmacophore Models Retrieved from Molecular Dynamic Simulations.
    Polishchuk P; Kutlushina A; Bashirova D; Mokshyna O; Madzhidov T
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31757043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function and structure-based screening of compounds, peptides and proteins to identify drug candidates.
    Malik V; Dhanjal JK; Kumari A; Radhakrishnan N; Singh K; Sundar D
    Methods; 2017 Dec; 131():10-21. PubMed ID: 28843611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico design of small molecules.
    Bernardo PH; Tong JC
    Methods Mol Biol; 2012; 800():25-31. PubMed ID: 21964780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constructing an atomic-resolution model of human P2X7 receptor followed by pharmacophore modeling to identify potential inhibitors.
    Ahmadi M; Nowroozi A; Shahlaei M
    J Mol Graph Model; 2015 Sep; 61():243-61. PubMed ID: 26298810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Use of Dynamic Pharmacophore in Computer-Aided Hit Discovery: A Case Study.
    Perricone U; Wieder M; Seidel T; Langer T; Padova A
    Methods Mol Biol; 2018; 1824():317-333. PubMed ID: 30039416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual screening of small molecules databases for discovery of novel PARP-1 inhibitors: combination of in silico and in vitro studies.
    Ekhteiari Salmas R; Unlu A; Bektaş M; Yurtsever M; Mestanoglu M; Durdagi S
    J Biomol Struct Dyn; 2017 Jul; 35(9):1899-1915. PubMed ID: 27315035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of the structural requirements of HIV-protease inhibitors using pharmacophore, virtual screening and molecular docking approaches for lead identification.
    Islam MA; Pillay TS
    J Mol Graph Model; 2015 Mar; 56():20-30. PubMed ID: 25541527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How to Prepare a Compound Collection Prior to Virtual Screening.
    Bologa CG; Ursu O; Oprea TI
    Methods Mol Biol; 2019; 1939():119-138. PubMed ID: 30848459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospective virtual screening in a sparse data scenario: design of small-molecule TLR2 antagonists.
    Murgueitio MS; Henneke P; Glossmann H; Santos-Sierra S; Wolber G
    ChemMedChem; 2014 Apr; 9(4):813-22. PubMed ID: 24470159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidermal growth factor receptor (EGFR) structure-based bioactive pharmacophore models for identifying next-generation inhibitors against clinically relevant EGFR mutations.
    Panicker PS; Melge AR; Biswas L; Keechilat P; Mohan CG
    Chem Biol Drug Des; 2017 Oct; 90(4):629-636. PubMed ID: 28303669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-QSAR pharmacophore-based virtual screening, molecular docking and molecular dynamics simulation toward identifying lead compounds for NS2B-NS3 protease inhibitors.
    Luo PH; Zhang XR; Huang L; Yuan L; Zhou XZ; Gao X; Li LS
    J Recept Signal Transduct Res; 2017 Oct; 37(5):481-492. PubMed ID: 28758854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrative in silico methodology for the identification of modulators of macrophage migration inhibitory factor (MIF) tautomerase activity.
    El Turk F; Fauvet B; Ouertatani-Sakouhi H; Lugari A; Betzi S; Roche P; Morelli X; Lashuel HA
    Bioorg Med Chem; 2010 Jul; 18(14):5425-40. PubMed ID: 20639113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel tumor necrosis factor-α (TNF-α) inhibitors from small molecule library screening for their therapeutic activity profiles against rheumatoid arthritis using target-driven approaches and binary QSAR models.
    Zaka M; Abbasi BH; Durdagi S
    J Biomol Struct Dyn; 2019 Jun; 37(9):2464-2476. PubMed ID: 30047845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Common Hits Approach: Combining Pharmacophore Modeling and Molecular Dynamics Simulations.
    Wieder M; Garon A; Perricone U; Boresch S; Seidel T; Almerico AM; Langer T
    J Chem Inf Model; 2017 Feb; 57(2):365-385. PubMed ID: 28072524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of QSAR and shape pharmacophore modeling approaches for targeted chemical library design.
    Ebalunode JO; Zheng W; Tropsha A
    Methods Mol Biol; 2011; 685():111-33. PubMed ID: 20981521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacophore modeling and virtual screening in search of novel Bruton's tyrosine kinase inhibitors.
    Sharma A; Thelma BK
    J Mol Model; 2019 Jun; 25(7):179. PubMed ID: 31172362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systematic methodology for large scale compound screening: A case study on the discovery of novel S1PL inhibitors.
    Deniz U; Ozkirimli E; Ulgen KO
    J Mol Graph Model; 2016 Jan; 63():110-24. PubMed ID: 26724452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual fragment preparation for computational fragment-based drug design.
    Ludington JL
    Methods Mol Biol; 2015; 1289():31-41. PubMed ID: 25709031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of the NRGsuite and the Molecular Docking Software FlexAID in Computational Drug Discovery and Design.
    Morency LP; Gaudreault F; Najmanovich R
    Methods Mol Biol; 2018; 1762():367-388. PubMed ID: 29594781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.